Рефераты по Физике

Учебник по физике для поступающих в ВУЗ

Страница 80

Усилитель на транзисторе

Одной из наиболее распространенных схем усиления слабых электрических сигналов на транзисторе, является схема с общим эмиттером.

Эмиттер включен как в цепь базы, так и в цепь коллектора.

Небольшое изменение входного напряжения цепи база-эмиттер DUвх = DUБЭ вызывает значительное изменение выходного напряжения, или напряжения на сопротивлении нагрузки DUвых = DUн

Коэффициент усиления – отношение изменения выходного напряжения к вызвавшему его изменению входного:

k =

Коэффициент усиления подобных схем может быть порядка 1000.

Генератор на транзисторе

Электрические колебания высокой частоты получают с помощью генераторов на транзисторах.

Основным элементом такого генератора является колебательный контур и источник постоянного тока, включенные в цепь эмиттер-коллектор, катушка индуктивности Lсв в цепи база-эмиттер, индуктивно связанная с катушкой индуктивности L колебательного контура .

Собственные электромагнитные колебания в контуре являются затухающими. Если потери энергии в контуре компенсировать поступлением энергии от источника внутри системы, то возможна генерация незатухающих колебаний, или автоколебаний.

В показанной схеме генератора на транзисторе поступление энергии в контур (подзарядка конденсатора) происходит, когда между базой и эмиттером приложено напряжение в прямом направлении – плюс – к базе, минус – к эмиттеру, транзистор открыт и через него протекает ток.

Такая полярность напряжения UБЭ обеспечивается согласованной индуктивной связью катушек L контура и Lсв в цепи база-эмиттер. Подобная связь называется обратной связью (в данном случае – это положительная обратная связь) (См.выше Автоколебания)

Через полупериод колебаний, когда конденсатор перезарядится, произойдет изменение напряжения база-эмиттер на противоположное и транзистор закроется.

Транзистор подобен ключу, присоединяющему источник питания к колебательному контуру в нужный момент времени для подзарядки конденсатора. Момент открытия ключа определяется индуктивной связью катушек L и Lсв

МАГНИТНОЕ ПОЛЕ. ЭЛЕКТРОМАГНИТНАЯ ИНДУКЦИЯ

ОСНОВНЫЕ ПОЛОЖЕНИЯ

Электрический ток оказывает магнитное действие. Таким образом, магнитное поле порождается движущимися зарядами.

Вектор магнитной индукции – векторная физическая величина, направление которой в данной точке совпадает с направлением, указываемым в этой точке северным полюсом свободной магнитной стрелки.

Модуль вектора магнитной индукции – физическая величина, равная отношению максимальной силы, действующей со стороны магнитного опля на проводник с током, к произведению силы тока и длины отрезка проводника:

B =

Единица магнитной индукции – Тл (Тесла)

Правило буравчика для прямого тока:

если ввинчивать буравчик по направлению тока в проводнике, то направление скорости движения конца его рукоятки совпадает с направлением вектора магнитной индукции в этой точке.

Правило правой руки для прямого тока:

если охватить проводник правой рукой, направив отогнутый большой палец вдоль тока, то кончики остальных пальцев в данной точке покажут направление вектора индукции в этой точке.

Принцип суперпозиции магнитных полей:

результирующая магнитная индукция в данной точке складывается из векторов магнитной индукции, созданной различными токами в этой точке.

Правило буравчика для витка с током (контурного тока):

если вращать буравчик по направлению тока в витке, то поступательное перемещение буравчика совпадает с направлением вектора магнитной индукции, созданной током в витке на своей оси.

Линии магнитной индукции – линии, касательные к которым в каждой точке совпадают с направлением вектора магнитной индукции.

Линии магнитной индукции всегда замкнуты: они не имеют ни начала, ни конца.

Магнитное поле – вихревое поле, т.е. поле с замкнутыми линиями магнитной индукции.

Магнитный поток (поток магнитной индукции) через поверхность определенной площади – физическая величина, равная скалярному произведению вектора магнитной индукции на вектор площади:

Ф = () = В ∆S cos(a)

(Скалярное произведение двух векторов равно произведению их модулей на косинус угла между ними)

Единица магнитного потока – Вб(Вебер) = Тл*м2 = В*с

Закон Ампера:

сила, с которой магнитное поле действует на помещенный в него отрезок проводника с током, равна произведению силы тока, магнитной индукции, длины отрезка проводника и синуса угла между направлениями тока и вектором магнитной индукции:

FA = B |I| l sin(a)

В однородном магнитном поле замкнутый контур стремиться установиться так, чтобы направление его собственной индукции совпало с направлением внешней индукции.

Сила Лоренца – сила, действующая на движущийся со скоростью v заряженную частицу со стороны магнитного поля индукцией В:

Fл = |q| vB sin(a),

где a – угол между вектором скорости v и вектором магнитной индукции B.

Направление силы Лоренца определяется правилом левой руки:

если кисть левой руки расположить так, чтобы четыре вытянутых пальца указывали направление скорости положительного заряда (или противоположное скорости отрицательного заряда), а вектор магнитной индукции входил в ладонь, то отогнутый на 90о большой палец покажет направление силы, действующей на данный заряд.

Заряженная частица, влетающая в однородное магнитное поле параллельно линиям магнитной индукции, движется вдоль этих линий.

Заряженная частица, влетающая в однородное магнитное поле в плоскости, перпендикулярной линиям магнитной индукции, движется в этой плоскости по окружности.

Параллельно расположенные проводники, по которым протекают токи в одном направлении, притягиваются, а в противоположных – отталкиваются.

Магнитные поля, создаваемые токами, протекающими по бесконечно длинным параллельным проводникам, находящимся на расстоянии r друг от друга, приводят к возникновению на каждом отрезке проводников длиной Dl силы взаимодействия:

Перейти на страницу:  1  2  3  4  5  6  7  8  9  10  11  12  13  14  15  16  17  18  19  20  21  22  23  24  25  26  27  28  29  30  31  32  33  34  35  36  37  38  39  40  41  42  43  44  45  46  47  48  49  50  51  52  53  54  55  56  57  58  59  60  61  62  63  64  65  66  67  68  69  70  71  72  73  74  75  76  77  78  79  80  81  82  83  84  85  86  87  88  89  90  91  92  93  94  95  96  97  98  99  100