Рефераты по Физике

Учебник по физике для поступающих в ВУЗ

Страница 61

Электростатическое поле сосредоточено внутри макроскопического тела и вблизи его поверхности.

Принцип суперпозиции позволяет рассчитать напряженность электростатического поля, созданного заряженными телами конечных размеров

Найдем напряженность электростатического поля положительного заряда Q, равномерно распределенного по поверхности сферы радиуса R.

В любой точке внутри сферы напряженность поля равна нулю, так как диаметрально противоположные заряды компенсируют действия друг друга.

Электростатическое поле внутри заряженной сферы отсутствует.

Найдем напряженность поля в произвольной точке А вне сферы, на расстоянии r от ее центра.

Мысленно разделим сферу на пары одинаковых точечных зарядов симметричных относительно прямой через центра сферы и точку А

Любая пара таких зарядов создает напряженность вдоль оси симметрии, поэтому напряженность вне заряженной сферы направлена радиально, от сферы.

Электростатическое поле, созданное заряженной сферой, сосредоточено в определенной области пространства – вне сферы.

Линии напряженности поля, созданного заряженной сферой в этой области, совпадают с линиями напряженности точечного положительного заряда +Q, помещенного в центр сферы.

Напряженность поля вне равномерно заряженной сферы совпадает с напряженностью поля точечного заряда, равного заряду сферы и помещенного в ее центре.

E =

Найдем напряженность электростатического поля заряженной плоскости в непосредственной близости от нее, т.е. на расстоянии r, значительно меньшем, чем линейный размер плоскости (r << l)

На таком расстоянии плоскость можно считать бесконечной

Характеристикой распределения заряда по плоскости является поверхностная плотность заряда.

Поверхностная плотность заряда – физическая величина, равная отношению заряда, равномерно распределенного по поверхности, к площади этой поверхности

σ =

Единица измерения – Кл/м2

Поверхностная плотность заряда численно равна заряду на 1 м2 поверхности.

Разобьем мысленно плоскость на пары одинаковых зарядов q, симметричных относительно точки О. Результирующая напряженность в произвольной точке Р от этой пары зарядов направлена перпендикулярно к плоскости от нее (в случае положительного заряда плоскости)

Линии напряженности положительно заряженной бесконечной плоскости направлены от нее перпендикулярно ее поверхности.

Линии напряженности отрицательно заряженной бесконечной плоскости направлены к ней перпендикулярно ее поверхности.

Линии напряженности электростатического поля параллельны лишь в случае однородного поля.

Напряженность поля бесконечной равномерно заряженной плоскости постоянна (одинакова на любом расстоянии от плоскости) и зависит лишь от поверхностной плотности заряда.

E =

В случае среды с относительной диэлектрической проницаемостью e, напряженность поля уменьшится в e раз:

E =

Полученное выражение справедливо лишь на малых по сравнению с размерами плоскости расстояниях.

ПРОВОДНИКИ В ЭЛЕКТРИЧЕСКОМ ПОЛЕ(уч.10кл.стр.392-396)

Распределение зарядов в проводнике при отсутствии и наличии электрического поля

Понятие электростатической индукции

Определение идеального проводника

Напряженность поля внутри проводника

Линии напряженности вне и внутри проводника

Эквипотенциальность поверхности проводника

Экранирование и его физический смысл

Распределение зарядов по поверхности проводника(уч.10кл.стр.365)

Условия равновесия зарядов

Распределение зарядов по поверхности проводящих сфер

Формула заряда на поверхности сферы

Носителями свободных зарядов в металлах являются электроны. Их концентрация велика – порядка 1028 м-3.

Эти электроны участвуют в беспорядочном тепловом движении. Под действием электрического поля они начинают перемещаться упорядоченно со средней скоростью 10-4 м/с.

Наличие сво­бодных электронов в металлах было доказано в опытах Л. И. Мандельштама и Н.Д.Папалекси (1913 г.), Б.Стю­артом и Р.Толменом (1916 г.).

На катушку наматывают проволоку, концы которой припаивают к двум металлическим дискам, изолированным друг от друга. К концам дисков при помощи скользящих контактов при­соединяют гальванометр. Катушку приводят в быстрое движение, а затем резко останавливают. После резкой остановки катушки свободные заряженные частицы некоторое время движутся относительно проводника по инерции, и, следовательно, в катушке возникает электрический ток. Ток существует незначительное время, так как из-за сопротивления проводника заряженные частицы тормозятся и упорядоченное движение частиц, обра­зующее ток прекращается.

В отрицательно заряженном проводнике избыточные электроны из-за взаимного отталкивания расходятся на максимальное расстояние, распределяясь по поверхности проводника.

В положительно заряженном проводнике свободные электроны втягиваются внутрь избыточным положительным зарядом протонов. Из-за ухода электронов с поверхности на ней остается избыточный положительный заряд.

Заряды, сообщенные проводнику, распределяются по его поверхности.

На поверхности электронейтрального проводника, помещенного во внешнее электростатическое поле, происходит перераспределение заряда, называемое электростатической индукцией.

В поле конденсатора отрицательные заряды притягиваются к положительной пластине, положительные – к отрицательной.

Эти заряды называются индуцированными.

Разделение зарядов прекращается, когда сила притяжения зарядов к пластинам будет равна силе притяжения между индуцированными зарядами.

В равновесии движение свободных зарядов прекращается, что свидетельствует об отсутствии электростатического поля внутри проводника.

Если в диэлектрике напряженность поля связанных зарядов лишь уменьшает напряженность внешнего поля, то в проводнике поле индуцированных (наведенных) зарядов полностью его компенсирует.

Перейти на страницу:  1  2  3  4  5  6  7  8  9  10  11  12  13  14  15  16  17  18  19  20  21  22  23  24  25  26  27  28  29  30  31  32  33  34  35  36  37  38  39  40  41  42  43  44  45  46  47  48  49  50  51  52  53  54  55  56  57  58  59  60  61  62  63  64  65  66  67  68  69  70  71  72  73  74  75  76  77  78  79  80  81  82  83  84  85  86  87  88  89  90  91  92  93  94  95  96  97  98  99  100