Рефераты по Физике

Учебник по физике для поступающих в ВУЗ

Страница 30

КОЛИЧЕСТВО ВЕЩЕСТВА(уч.10кл.стр.216-217)

См. ниже «Моль» и «Постоянная Авогадро»

МОЛЬ(уч.10кл.стр.216-217)

Моль. Определение

Молярная масса. Единицы измерения

Молярная масса и количество атомов вещества в моле.

Постоянная Авогадро

Количество вещества характеризуется количеством молекул этого вещества.

Моль – количество вещества, масса которого, выраженная в граммах, численно равна относительной атомной массе.

Массу одного моля называют молярной массой и обозначают М

М= Мr * 1 г/моль

Единица молярной массы – кг/моль

Молярная масса может быть выражена через число атомов (или молекул) в моле вещества NA и массу отдельного атома ma:

M = NAma

(ma = Mr а.е.м = Mr * 1.66*10-27 кг – масса атома)

Постоянная Авогадро – число атомов (или молекул), содержащееся в 1 моль вещества:

NA = 6.022*1023 моль-1

Постоянная Авогадро одинакова для всех веществ, т.е. моль любого вещества содержит одинаковое число атомов (или молекул)

ПОСТОЯННАЯ АВОГАДРО (уч.10кл.стр.216-217)

Моль. Определение

Молярная масса. Единицы измерения

Молярная масса и количество атомов вещества в моле.

Постоянная Авогадро

Любое вещество состоит из частиц, поэтому количество вещества принято считать пропорциональным числу частиц.

Единицей количества вещества является моль.

Моль – количество вещества, масса которого, выраженная в граммах, численно равна относительной атомной массе.

Моль равен количеству вещества системы, содержащей столько же частиц, сколько содержится атомов в 0,012 кг углерода.

Массу одного моля называют молярной массой и обозначают М

М= Мr * 1 г/моль

Единица молярной массы – кг/моль

Отношение числа молекул к количеству вещества называется постоянной Авогадро:

NA =

Постоянная Авогадро:

NA = 6.022*1023 моль-1

Она показывает, сколько атомов или молекул содержится в одном моле вещества.

Постоянная Авогадро одинакова для всех веществ, т.е. моль любого вещества содержит одинаковое число атомов (или молекул)

Постоянная Авогадро впервые была вычислена Перреном при опытах по изучению броуновского движения частиц.

Количество вещества можно найти как отношение числа атомов или молекул вещества к постоянной Авогадро:

υ =

Молярной массой называется величина, равная отношению массы вещества к количеству вещества:

M =

Молярную массу можно выразить через массу молекулы:

M = m0NA

Для определения массы молекул нужно разделить массу вещества на число молекул в нем:

m0 = = =

ВЗАИМОДЕЙСТВИЕ МОЛЕКУЛ

Молекула – сложная система, состоящая из большого числа отдельных заряженных частиц. Хотя в целом молекулы электрически нейтральны, на малых расстояниях действуют значительные электрические силы взаимного притяжения электронов и атомных ядер соседних молекул.

Силы между электрически нейтральными молекулами являются короткодействующими.

На очень малых расстояниях, когда электронные оболочки атомов начинают перекрываться, между молекулами возникают значительные силы отталкивания.

МОДЕЛИ ГАЗА, ЖИДКОСТИ И ТВЕРДОГО ТЕЛА(уч.10кл.стр.218-224)

Виды агрегатного состояния вещества

Агрегатные переходы

Твердое тело. Определение и свойства

Жидкое тело. Определение и свойства

Газообразное тело. Определение и свойства. Кинетическая энергия молекул (уч.10кл.стр.223)

Плазма. Определение и свойства (уч.10кл.стр.224)

Энергия молекул при переходах (см.ниже уч.10кл.)

Взаимное расположение, характер движений и взаимодействие молекул вещества, существенно зависящие от внешних условий, характеризуют его агрегатное состояние.

Различают четыре агрегатных состояния вещества:

- твердое

- жидкое

- газообразное

- плазменное

Фазовый переход – переход системы из одного агрегатного состояния в другое.

При фазовом переходе скачкообразно изменяется какая-либо физическая величина или симметрия системы.

Реализация того или иного агрегатного состояния вещества зависит от соотношения кинетической и потенциальной энергии молекул, входящих в его состав.

Твердое тело

Вещество находится в твердом состоянии, если средняя потенциальная энергия притяжения молекул много больше их средней кинетической энергии.

Молекулы в твердом теле располагаются упорядочено и плотно заполняют пространство.

Значительная потенциальная энергия взаимодействия препятствует изменению среднего расстояния между атомами (молекулами). Следствие – сохранение формы и объема.

При деформации в твердом теле возникают силы, стремящиеся восстановить его форму.

Жидкость

Вещество находится в жидком состоянии, если средняя кинетическая энергия молекул соизмерима со средней потенциальной энергией их притяжения.

Молекулы в жидкости расположены почти вплотную друг к другу и совершают колебания около положений равновесия, иногда перескакивая из одного положения в другое, сталкиваясь с соседними молекулами.

При повышении температуры время «оседлой» жизни молекул жидкости уменьшается.

Рост кинетической энергии молекул приводит к увеличению амплитуды их колебаний. Молекулы могут перескакивать из одного равновесного состояния в другое.

Относительные положения молекул в жидкости не фиксированы.

Жидкости текучи и не сохраняют своей формы.

Текучесть жидкости объясняется тем, что перескоки молекул из одного положения равновесия в другое происходят преимущественно в направлении действия внешней силы.

Сжимаемость жидкости не велика и мало отличается от сжимаемости твердых тел из-за малого расстояния между молекулами.

Газ

Вещество находится в газообразном состоянии, если средняя кинетическая энергия молекул превышает их среднюю потенциальную энергию.

Расстояние между атомами или молекулами в газе во много раз больше размеров самих молекул.

Газ может неограниченно расширяться в пространстве, так как силы притяжения между молекулами незначительны. Газы не сохраняют ни формы ни объема.

Перейти на страницу:  1  2  3  4  5  6  7  8  9  10  11  12  13  14  15  16  17  18  19  20  21  22  23  24  25  26  27  28  29  30  31  32  33  34  35  36  37  38  39  40  41  42  43  44  45  46  47  48  49  50  51  52  53  54  55  56  57  58  59  60  61  62  63  64  65  66  67  68  69  70  71  72  73  74  75  76  77  78  79  80  81  82  83  84  85  86  87  88  89  90  91  92  93  94  95  96  97  98  99  100