Рефераты по Физике

Учебник по физике для поступающих в ВУЗ

Страница 20

ПОТЕНЦИАЛЬНАЯ ЭНЕРГИЯ (уч.10кл. стр.135-142, 153)

Определение потенциальной силы

Работа потенциальной силы

Определение потенциальной энергии

Работа сил трения, тяжести га примере скатывания тела по наклонной плоскости

Принцип минимума потенциальной энергии

Устойчивое, неустойчивое, безразличное равновесия. Определения и примеры

Работа силы тяжести (уч.10кл.стр.139)

Потенциальная энергия в гравитационном поле. Формула

Работа силы тяжести в гравитационном поле

Зависимость потенциальной энергии в поле тяжести от расстояния до центра поля. График

Работа силы упругой деформации

Потенциальная энергия тела при упругом взаимодействии. Формула

Зависимость потенциальной энергии упругой деформации от деформации. График

Упругое и не упругое столкновение. Определения. Переход энергии. (уч.10кл.стр.153)

Закон сохранения полной механической энергии изолированной системы (коротко)

Потенциальная(Консервативная) сила – сила, работа которой при перемещении материальной точки зависит только от начального и конечного положений точки в пространстве.

Работа консервативной силы при перемещении материальной точки по замкнутому контуру равна нулю.

Например, сила тяжести – потенциальная сила, ее работа не зависит от формы траектории (см. выше сила тяжести)

Потенциальной (лат. потенция – возможность) энергией называется энергия, которая определяется взаимным положением взаимодействующих тел или частей одного и того же тела.

Потенциальная энергия тела в данной точке – скалярная физическая величина, равная работе, совершаемой потенциальной силой при перемещении тела из этой точки в точку, принятую за нуль отсчета потенциальной энергии.

Единица измерения – Дж (Джоуль)

Обозначение - Еp

Потенциальной энергией обладает всякое упруго деформированное тело.

Потенциальную энергию сжатого газа используют в тепловых двигателях, пневмоинструменте и т.д.

Так работа силы тяжести Ag = Ep1 – Ep2 = mgH

Потенциальная энергия в этом случае характеризует энергию гравитационного притяжения материальной точки к Земле.

Потенциальная энергия материальной точки, поднятой на высоту Н над «нулем»

Eр = mgH

Потенциальная энергия зависит от координаты (относительно «нуля» потенциальной энергии)

Изменение потенциальной энергии характеризует работу силы тяжести по перемещении тела. Эта работа равна изменению потенциальной энергии, взятому с противоположным знаком. Тело находящееся ниже поверхности земли, имеет отрицательную потенциальную энергию.

В общем случае работа всех сил, действующих на тело равна сумме работ потенциальных и не потенциальных сил: A = Ap + Anp

Принцип минимума потенциальной энергии:

Любая замкнутая система стремиться перейти в такое состояние, в котором ее потенциальная энергия минимальна.

Устойчивое равновесие – равновесие, при котором тело, выведенное из положения равновесия, возвращается в первоначальное положение.

Неустойчивое равновесие – равновесие, при котором тело, выведенное из положения равновесия, не возвращается в первоначальное положение.

Безразличное равновесие – равновесие, при котором соседние положения тела также являются равновесными.

Работа силы тяжести при перемещении тела на высоту Н:

Fg = - G

Ag = FgH cos(0) = G H

Ag = Ep(r) – Ep(r-H)

Потенциальная энергия тела массой m в гравитационном поле:

Ep(r) = - G

Начало отсчета находится на бесконечно большом расстоянии от Земли (на бесконечности) На этом расстоянии стремиться к нулю и сила гравитационного притяжения к Земле

Расстояние во всех инерциальных системах отсчета одно и тоже. Поэтому потенциальная энергия не зависит от выбора системы отсчета, а зависит от выбора «нуля» отсчета.

Работа силы упругости при растяжении и сжатии пружины

Потенциальную энергию имеют не только поднятые тела. Рассмотрим работу, совершаемую силой упругости при деформации пружины.

Сила упругости меняется от Fупр = kx0 до Fупр = kx

Средняя сила упругости Fупр.ср = = (x0 + x)

Направление средней силы упругости и перемещения совпадают

Работа силы упругости зависит только от начального и конечного положений.

Это значит, что сила упругости - потенциальна.

Aупр = (x0 + x)∆x = (x0 + x)(x0 - x) = -

Потенциальная энергия пружины (упругодеформированного тела)

Ep =

x – удлинение или сжатие тела (пружины)

k – жесткость тела (пружины)

Начало отсчета соответствует нерастянутой пружине, удлинение которой x=0

Потенциальная энергия упругодеформированной пружины равна работе силы упругости при переходе пружины из деформированного состояния в недеформированное.

Потенциальная энергия упругодеформированной (сжатой или растянутой) пружины зависит от степени ее деформации.

Важной характеристикой потенциальной энергии является то, что тело не может обладать ею, не взаимодействуя с другими телами.

Потенциальная энергия характеризует взаимодействующие тела, кинетическая – движущиеся. И та, и другая возникают в результате взаимодействия тел.

Если тела взаимодействую между собой только силами тяготения и силами упругости, и никакие внешние силы на них не действуют (или же их равнодействующая равна нулю), то при любых взаимодействиях тел работа сил упругости или сил тяготения равна изменению потенциальной энергии, взятой с противоположным знаком.

В то же время, по теореме о кинетической энергии (изменение кинетической энергии тела равно работе внешних сил) работа тех же сил равна изменению кинетической энергии:

Перейти на страницу:  1  2  3  4  5  6  7  8  9  10  11  12  13  14  15  16  17  18  19  20  21  22  23  24  25  26  27  28  29  30  31  32  33  34  35  36  37  38  39  40  41  42  43  44  45  46  47  48  49  50  51  52  53  54  55  56  57  58  59  60  61  62  63  64  65  66  67  68  69  70  71  72  73  74  75  76  77  78  79  80  81  82  83  84  85  86  87  88  89  90  91  92  93  94  95  96  97  98  99  100