Рефераты по Физике

Кристаллы в природе

Страница 17

Так как в чистом полупроводнике число электронов равно числу дырок, то и те и другие принимают участие в электропроводности в равной мере. Такую электропроводность полупроводников называют собственной.

Все сказанное выше относится к химически чистым полупроводникам, у которых электропроводность обеспечивается примесями. В качестве примесей используют элементы III и V групп периодической системы элементов Д.И.Менделеева. Пяти - валентные привесные атомы имеют на внешнем слое 5 электронов. Для образования ковалентной связи с окружающими атомами полупроводника необходимо всего 4 электрона. Остаётся один электрон, который не участвует в образовании сильной ковалентной связи. Это электрон слабо связан со своим атомом смеси: сила взаимодействия между электроном и ионом атома примеси при попадании последнего в полупроводник в соответствии с законом Кулона уменьшается в ε = (10÷18) раз. Поэтому достаточно малой энергии, чтобы электрон от атома примеси последний превращается в положительный ион, хотя сам полупроводник остаётся электрически нейтральным. Энергия, необходимая для того, чтобы пятый электрон стал свободным, много меньше энергии, необходимой для появления свободного электрона из валентной зоны. Этот факт говорит о том, что уровень энергии Еd такого электрона лежит чуть ниже «дна» свободной зоны (рис32). Смотрите www.almaprom.ru леса стоечные приставные штыревые.

Этот уровень Еd характеризует все «пятые» электроны атомов примеси, так как эти электроны находятся в одинаковых условиях.

Уровень энергии характеризует как энергетическое состояние электронов, слабо связанных с атомом примеси, так и энергетическое состояние самих атомов примеси. Ширина запрещённой зоны ∆Еd от «дна» свободной зоны, определяет энергию, необходимую для возбуждения атома примеси и превращение его в положительный ион. Положительный заряд такого иона примеси - «связанный» заряд, он не может перемещаться от одного атома примеси к другому.

Если увеличить температуру кристалла германия с пятивалентной примесью,

начиная с абсолютного нуля, то в первую очередь в свободную зону начнут переходить электроны с примесного уровня, так как ∆Еd<<∆E. Такие переходы начнут уже при Т=5°К, потому что ∆Еd =0,01эв. И только при более высокой температуры электроны из валентной зоны будут переходить в свободную.

Ясно, что в таких условиях число свободных электронов всегда будет превышать число «дырок» в валентной зоне, которые образовались за счёт части электронов, ушедших из валентной зоны в зону проводимости.

Если в таком примесном полупроводнике создать электрическое поле, то электропроводность будет осуществляться в основном за счёт свободных электронов. Таким образом, пятивалентные примеси служат поставщикам свободных электронов, поэтому их называют донорами, а полупроводники с такими примесями - полупроводниками п-типа.

рис. 32 рис. 33

Атомы элементов из III группы периодической системы имеют всего три валентных электрона, которые образуют парные электронные связи с тремя атомами германия. Одна электронная связь с четвёртым атомом германия остаётся незаполненной. Заполнение связи может произойти, если электроны атомов германия получать небольшую энергию возбуждения. Атом примеси, присоединивший электрон, становится отрицательным ионом. При этом на месте ушедшего от атома германия электрона образуется дырка.

Рассматривая такой полупроводник с энергетической точки зрения, можно увидеть, что уровень энергии, характеризующее энергетическое состояние всех атомов трёхвалентной примеси с точки зрения захвата электронов для заполнения связей, находится чуть выше «потолка» валентной зоны, так как атомы примеси захватывают немного возбуждённые электроны из валентных состояний. ∆Еа- ширина зоны, отделяющий уровень примеси Еа от потолка валентной зоны(рис 33). При этом ∆Еа<<∆Е. с увеличением температуры в первую очередь начнутся переходы электронов из валентной зоны на примесный уровень Еа. При значительно более высоких температурах электроны будут переходить из валентной зоны в свободную. Отсюда ясно, что при температуре число дырок в валентной зоне всегда больше, чем число электронов в свободной зоне. Если в таком проводнике будет осуществляться преимущественно за счёт дырок валентной зоны.

Трёхвалентные примеси «захватывают» электроны, поэтому их называют акцепторами, а полупроводники с такими примесями – полупроводниками р-типа.

5.8. Контактные явления

Если говорить языком электронной теории, то два разнородных металла отличаются друг от друга различной концентрацией электронов и различной работой выхода (Авых), а полупроводники разных типов - ещё и основными носителями тока. Исходя из зонной теории можно сказать, что два разнородных металла отличаются друг от друга энергией Ферми - верхним занятым электронами уровнем.

Что произойдёт, если сблизить два разнородных металла или два полупроводника с различным типом проводимости или металл и полупроводник до межатомного расстояния? Оказывается, что при этом обнаружат себя весьма интересные явления, которые получили названия контактных.

При контакте двух металлов вследствие теплового движения электроны, энергия которых достаточна для того, чтобы покинуть металл, начнут проходить через границу раздела металлов. Чем меньше работа выхода металла, тем больше число таких электронов. Итак, при контакте двух металлов возникает двойной электрический слой.

С возникновением двойного электрического слоя условия движение электронов через границу раздела металлов изменяются. Теперь электроны движутся во внутреннем электрическом поле, электрические силы которого тормозят переход электронов из металла 1 в металл 2 (рис34)

рис. 34

и «помогают» электронам, переходящим из металла 2 в металл 1. Так продолжается до тех пор, пока не наступит «динамическое равновесие» - непрекращающееся движение электронов из одного металла в другой никак не изменяет возникшей между металлами контактной разности потенциалов ∆φ=φ1-φ2.

Перейти на страницу:  1  2  3  4  5  6  7  8  9  10  11  12  13  14  15  16  17  18  19  20  21  22  23  24  25  26  27  28  29