Рефераты по Физике

Кристаллы в природе

Страница 11

Образования дефектов: в результат теплового движения атомов и их взаимодействия возможны отклонения энергии отдельных атомов от среднего значения, при котором атом удерживается в узле кристаллической решётки. При этом большие отклонения от средней величины менее вероятны, чем малые отклонения. Однако большие отклонения, превышающие среднее значение энергии на несколько порядков всё-таки возможны.

Дефекты могут появиться также в процессе роста кристалла.

Образование точечных дефектов возможно в процессе роста кристалла и из-за флуктуации энергии.

Экспериментально подтверждает наличие точечных дефектов в кристаллах явление диффузии в твёрдых телах.

На самом деле, в кристалле без дефектов никакой диффузии не должно было бы быть. Если атомы колеблются около узлов кристаллической решётки и не «покидают» эти положения, то не может быть проникновения атомов одного кристалла в другой.

Между тем установлено, что диффузия в твёрдых телах происходит, хотя и в меньших масштабах, чем в газах и жидкостях. Особенно интересно, что интенсивность этого процесса растёт с увеличением температуры.

Согласно этой теории диффузия в кристаллах происходит за счёт движения атомов внедрения, движения вакансии или какого-либо обмена местами между атомами. Для того чтобы атомы внедрения «перебрались» в другие промежутки между узлами, а вакансии - в другие узлы, необходимо, чтобы атомы, составляющие непосредственное окружение точечного дефекта, «расступились». При повышении температуры атомы «расступаются» чаще и дефекты перемещаются по кристаллу быстрее, а следовательно, и процесс диффузии происходит быстрее. Кроме того, с ростом температуры увеличивается и число точечных дефектов. Однако определяющим фактором в увеличении интенсивности диффузии при увеличении температуры является не рост числа дефекта, а их продвижение.

4.4 Дислокации

Дислокации - это перемещения. Различают два вида дислокаций: краевую и винтовую. Краевая дислокация (рис24).

рис. 24 рис. 25

Искажение кристаллической структуры вызвано тем, что, и части объёмного кристалла в процессе его роста возникла лишняя атомная «полуплоскость». Искажения сосредоточено в основном вблизи нижнего края «полуплоскости» «лишних» атомов. Под дислокацией в подобных случаях понимают линию, проходящую вдоль края лишней атомной «полуплоскости».

Искажение сосредоточено вблизи дислокационной линии. На расстоянии же нескольких атомных диаметров в сторону искажения настолько малы, что в этих местах кристалл имеет почти совершенную форму. Искажения возле края «лишней полуплоскости» вызваны тем, что ближайшие атомы как бы «пытаются» согласовать своё расположение с резким обрывом «лишней полуплоскости».

Любая царапина на поверхности кристалла может стать причиной краевой дислокации. Действительно, царапину на поверхности кристалла можно рассматривать как нехватку одной атомной плоскости. В результате теплового движения атомы из соседних областей могут перейти на поверхность, а дислокация тем самым переместится во внутрь.

Винтовая дислокация (рис 25).

Образования винтовой дислокации можно представить таким образом. Мысленно надрежем кристалл по плоскости и сдвинем одну его часть относительно другой по этой плоскости на один период решётки параллельно краю надреза. При этом линия искажения пойдёт вдоль края разреза. Эту линию и называют винтовой дислокацией. При винтовой дислокации лишнего ряда атомов нет. Искажение пространственной решётки кристалла состоит в том, сто атомные ряды изгибаются и меняют своих соседей.

Установлено, что винтовые дислокации чаще всего образуются во время роста кристалла. Однако приложение напряжений может увеличить число винтовых дислокаций.

Дислокации, как и точечные дефекты, могут перемещаться по кристаллической решётке. Однако движение дислокаций связано с большими ограничениями, так как дислокация всегда должна быть непрерывной линией. Возможны два основных вида движений дислокаций: переползание и скольжение. Переползание дислокаций происходит благодаря добавлению или удалению атомов из лишней полуплоскости, что бывает вследствие диффузии. При скольжении дислокации, лишняя полуплоскость, занимавшая определённое положение в кристаллической решётке соединяется с атомной плоскостью, находящейся под плоскостью скольжения, а соседняя атомная плоскость становится теперь лишней полуплоскостью. Такое плавное скольжения линии дислокации вызывается действием напряжений сдвига, приложенных к поверхности кристалла.

Наблюдения показывают, что перемещение дислокаций в реальном кристалле в одних случаях может быть облегчённо, в других – затруднённо, в зависимости от характера тех искажений, которые вносит дислокация в кристаллическую решётку.

4.5. Экспериментальные методы изучения дефектов кристаллов

В настоящее время с помощью ионного проектора и электронного микроскопа получают фотографии структуры кристаллов с имеющимися в них дефектами. Для изучения дефектов кристаллов используют также метод протравливания. На поверхность кристалла наносят химические травители, которые наиболее активно взаимодействуют с теми областями кристалла, в которых сосредоточены наибольшие искажения, вызванные дислокациями.

В результате травления на поверхности кристалла появляются ямки, свидетельствующие о наличии дислокации в этом месте. Ямки рассматривают в обычный оптический микроскоп. Этот метод используют для определения плотности дислокаций. На рисунке 26 представлена схема фотографии травления чисто отполированной поверхности германия.

рис. 26

Интересен также метод моделирования процессов, связанных с взаимодействиями дислокаций. Для этого используют пузырьковую модель кристалла. Такую модель получают выдуванием через мыльный раствор воздушных пузырьков диаметром от 1 до 2 мм. При определённых способах приготовления раствора и выдувания пузырьков можно получить модель совершенной кристаллической структуры (рис27). Производя в этой модели некоторые возмущения, моделируют дефекты и процессы, связанные с ними (рис28).

Перейти на страницу:  1  2  3  4  5  6  7  8  9  10  11  12  13  14  15  16  17  18  19  20  21  22  23  24  25  26  27  28  29