Рефераты по Физике

История изучения капиллярных и поверхностных сил

Страница 2

В 1802 г. Джон Лесли привел первое корректное объяснение подъ­ема жидкости в трубке, рассматривая притяжение между твердым телом и тонким слоем жидкости на его поверхности [6]. Он, в отличие от большинства преды­дущих исследователей, не предполагал, что сила этого притяжения на­правлена вверх (непосредственно для под­держания жидкости). Напротив, он показал, что притяже­ние всюду нормально к по­верхности твердого тела.

Прямой эффект притяжения — увеличение давления в слое жидкости, на­ходя­щемся в контакте с твердым телом, так, что давление становится выше, чем внутри жидкости. Результатом этого является то, что слой стремится “растечься” по по­верх­ности твердого тела, останавливаемый лишь силами гра­витации. Таким обра­зом, стек­лянная трубка, погруженная в воду, смачивается водой всюду, куда та “смогла до­ползти”. Поднимаясь, жидкость образует столб, вес которого в конце концов уравно­вешивает силу, порождающую рас­текание жидкости.

Эта теория не была записана с помощью математических символов и по­этому не могла показать количественную связь между притяжением отдельных частиц и конеч­ным результатом. Теория Лесли была позднее переработана с применением ла­пласов­ских математических методов Джеймсом Ивори (James Ivory) в статье о capil­lary action, under “Fluids, Elevation of”, в приложении к 4-му изданию Encyclo­paedia Britannica, опубликованном в 1819 г.

Теории Юнга и Лапласа.

В 1804 г. Томас Юнг [7] обосновал теорию капиллярных явле­ний на прин­ципе поверхностного натяжения. Он также наблюдал постоян­ство угла смачива­ния жид­ко­стью поверхности твердого тела (краевого угла) и нашел количе­ст­венное соотно­шение, связывающее краевой угол с коэффициен­тами поверхност­ного натяжения со­ответст­вующих межфазных границ. В рав­новесии контактная ли­ния не должна дви­гаться по поверхности твердого тела, а значит, говорил

(1)

где sSV, sSL, sLV — коэффициенты поверхностного натяжения межфазных гра­ниц твер­дое тело – газ (пар), твердое тело – жидкость, жидкость – газ соот­ветст­венно, q — краевой угол. Это соотношение теперь известно как формула Юнга. Эта работа все же не оказала такого влияния на развитие науки в этом направ­лении, какое ока­зала вы­шедшая несколькими месяцами позже статья Лапласа (Pierre Simon Laplace). Это, по-видимому, связано с тем, что Юнг избе­гал ис­пользования математических обозначений, а пытался описывать все сло­весно, отчего его работа кажется запутан­ной и неясной. Тем не менее он счита­ется се­годня одним из основателей количест­венной теории ка­пиллярности.

Явления когезии и адгезии , конденсация пара в жидкость, смачивание твердых тел жидкостями и многие другие простые свойства вещества — все ука­зывало на на­ли­чие сил притяжения, во много раз более сильных, чем гравита­ция, но действую­щих только на очень малых расстояниях между молекулами. Как говорил Лаплас, единст­венное вытекающее из наблюдаемых явлений усло­вие, налагаемое на эти силы, состоит в том, что они «неощутимы на ощутимых расстояниях».

Силы отталкивания создавали больше хлопот. Их наличие нельзя было от­ри­цать — они должны уравновешивать силы притяжения и препятствовать пол­ному разруше­нию вещества, но их природа была совершенно неясной. Во­прос осложнялся двумя следующими ошибочными мнениями. Во-первых, часто счи­талось, что дейст­вующей силой отталкивания является тепло (как правило, мне­ние сторонников тео­рии тепло­рода), поскольку (такова была аргументация) жидкость при нагревании сначала расши­ряется и затем кипит, так что молеку­лы разъединяются на гораздо большие расстояния, чем в твердом теле. Второе ошибочное мнение возникло из уводящего назад к Ньютону представления, со­гласно которому наблюдаемое давле­ние газа происходит вследствие статиче­ского отталкивания между молекулами, а не из-за их столкновений со стенками сосуда, как тщетно доказывал Даниель Бернулли.

На этом фоне было естественно, что первые попытки объяснить капил­ляр­ность или вообще сцепление жидкостей основывались на статических аспек­тах вещества. Ме­ханика была хорошо понимаемой теоретической ветвью науки; термодинамика и кине­тическая теория были еще в будущем. В механиче­ском рассмотрении ключевым было предположение о больших, но короткодей­ст­вующих силах притяжения. По­коящиеся жидкости (в капиллярной ли трубке или вне ее) находятся, очевидно, в равновесии, а потому эти силы притяжения должны уравновешиваться силами от­талкивания. По­скольку о них можно было сказать еще меньше, чем о силах притя­жения, их часто об­ходили молчанием, и, говоря словами Рэлея, «силам притяжения предоставлялось ис­полнять немыс­лимый трюк уравновешивания самих себя». Лап­лас[2] первым удовлетво­ри­тельно разрешил эту проблему [8], полагая, что силы оттал­кивания (тепловые, как он допускал) можно заменить внутренним давлением, кото­рое действует повсеме­стно в несжимаемой жидкости. (Это предположение приводит време­нами к не­определенности в работах XIX в. в отношении того, что строго пони­мается под «давлением в жидко­сти».) Приведем расчет внутреннего давления по Ла­п­ласу. (Этот вывод ближе к выво­дам Максвелла [2] и Рэлея [10]. Вывод при­водится по [9] .)

Оно должно уравновешивать силы сцепления в жидкости, и Лаплас отож­деств­лял это с силой на единицу площади, которая оказывает сопротивление разделению беско­нечного жидкого тела на два далеко разъединяемых полубес­конечных тела, ог­раничен­ных плоскими поверхностями. Приведенный ниже вывод ближе к выводам Максвелла и Рэлея, чем к оригинальной форме Лапласа, но существенного различия в аргумента­ции нет.

Рассмотрим два полубесконечных тела жидкости со строго плоскими по­верх­но­стями, разделенные прослойкой (толщины l) пара с пренебрежимо малой плотно­стью (рис. 1), и в каждом из них выделим элемент объема. Первый нахо­дится в верх­нем теле на высоте r над плоской поверхностью нижнего тела; его объем равен dxdydz. Второй находится в нижнем теле и имеет объем , где начало полярных коорди­нат совпа­дает с положением пер­вого элементарного объема. Пусть f(s) — сила, дейст­вующая между двумя мо­лекулами, разделенными расстоянием s, а d - радиус ее дейст­вия. Поскольку это всегда сила притяжения, имеем

Перейти на страницу:  1  2  3  4  5  6  7  8  9  10