Рефераты по Физике

Фонон

Страница 10

Для энергии акустических колебаний при низких температурах получаем:

E=\frac{\pi^2}{10} \frac{k_B^4T^4}{s^3\hbar^3}= \frac{3\pi^4}{5} Nk_BT\left(\frac{T}{\theta}\right)^3,

(62)

откуда следует, что теплоемкость решетки при низких температурах пропорциональна T3:

C_V=\frac{dE}{dT}=\frac{2\pi^2}{5} \frac{k_B^4T^3}{s^3\hbar^3}= \frac{12\pi^4}{5} Nk_B\left(\frac{T}{\theta}\right)^3

(63)

При высоких температурах, T>>θ, верхний предел интегрирования мал, поэтому можно считать, что exp(x)–1≈ x, таким образом:

\int_0^{\theta/T}\frac{x^3 dx}{e^x-1}\approx \frac{1}{3} \left(\frac{\theta}{T}\right)^3

(64)

E = 3NkT

(65)

CV = 3Nk

(66)

Это закон Дюлонга и Пти, только вместо полного числа колебаний 3lN стоит число колебаний акустических ветвей 3N. (При высоких температурах на каждое колебание приходится средняя энергия kBT, полное число акустических колебаний равно 3N, поэтому вклад акустических ветвей в энергию равен 3NkT).

В пределе низких и высоких температур модель Дебая дает точные значения для вклада акустических ветвей в энергию и теплоемкость. В области же промежуточных температур, T~θ, эта модель лишь аппроксимирует реальную зависимость энергии и теплоемкости от температуры.

Температура Дебая разделяет две температурные области. В области низких температур на энергию и теплоемкость решетки сильное влияние оказывают квантовые эффекты (''вымерзание'' высокочастотных колебаний). В области высоких температур эти эффекты не существенны, и теплоемкость может быть вычислена в классическом приближении. Для большинства кристаллов температура Дебая лежит в интервале от 100 до 300K.

Чтобы получить полную энергию и теплоемкость кристаллической решетки, надо к вкладу акустических колебаний прибавить вклад оптических ветвей, для которого хорошим приближением является модель Эйнштейна. Этот вклад пренебрежимо мал при низких температурах. При высоких температурах вклады всех ветвей в энергию и теплоемкость равны.

Экспериментальные методы исследования закона дисперсии фононов

Наиболее мощный метод исследования закона дисперсии фононов — комбинационное рассеяние разного типа частиц (волн) на колебаниях кристаллической решетки. Это неупругое рассеяние: частица (волна), взаимодействуя с колебаниями решетки, меняет не только направление движения, но и энергию (частоту).

Рассмотрим комбинационное рассеяние света. Пусть на кристалл падает пучок монохроматического света с волновым вектором \vec{\varkappa}_0 и частотой \Omega_0=c\varkappa_0(рис. 7).

Рис. 7.

Если исследовать спектр света, рассеянного кристаллом в определенном направлении, то в простейшем случае он будет иметь вид, изображенный на рис. 8.

Рис. 8.

Помимо высокого центрального пика, расположенного на частоте падающего света Ω0 (упругое рассеяние), появляются еще два сателлита, сдвинутых влево и вправо на частоту длинноволнового оптического фонона ω:

Ω = Ω0±ω

(67)

Левый пик называют стоксовым, правый — антистоксовым.

Изменение частоты при рассеянии невелико, т. к. частота оптического фонона меньше частоты света в десятки раз. Действительно, характерная энергия кванта света, ħΩ0, равна 1 эВ, а энергия оптического фонона по нашей оценке (см.) составляет около 50 мэВ.

Если в кристалле имеется несколько ветвей оптических фононов, то в спектре комбинационного рассеяния будет наблюдаться несколько пар сателлитов.

Частоты, на которых располагаются линии спектра рассеянного света являются ''комбинациями'' частоты падающего света Ω0 и частоты фонона ω. Из-за этого рассеяние и называется комбинационным.

Впервые эффект комбинационного рассеяния был экспериментально обнаружен и объяснен Г. С. Ландсбергом и Л. И. Мандельштамом в 1928 г.; в экспериментах использовались кристаллы кварца и исландского шпата. В том же году Ч. В. Раман обнаружил комбинационное рассеяние в жидкостях, поэтому эффект комбинационного рассеяния также называют эффектом Рамана, а рассеяние — рамановским. В 1930 г. Раману за обнаружение комбинационного рассеяния была присуждена Нобелевская премия.

Комбинационное рассеяние наблюдается не только в твердых телах. Например, при рассеянии на молекулах газа сдвиг линий комбинационного рассеяния будет определятся частотой колебаний атомов в молекуле. Если у молекулы несколько колебательных степеней свободы, то в спектре рассеянного излучения будет наблюдаться несколько линий.

Перейти на страницу:  1  2  3  4  5  6  7  8  9  10  11  12  13