Рефераты по Физике

Методы изучения масс микрочастиц

Страница 4

Диапазоны измерений жидкостных манометров в соответствии с (2) определяются высотой столба жидкости, т. е. размерами маномет­ра и плотностью жидкости. Наиболее тяжелой жидкостью в настоящее время является ртуть, плотность, которой р = 1,35951 • 104 кг/м . Столб ртути высотой 1 м развивает давление около 136 кПа, т. е. давле­ние, не из много превышающее атмосферное давление. Поэтому при из­мерении давлений порядка 1 МПа размеры манометра по высоте соизме­римы с высотой трехэтажного дома, что представляет существенные экс­плуатационные неудобства, не говоря о чрезмерной громоздкости кон­струкции. Тем не менее, попытки создания сверхвысоких ртутных ма­нометров предпринимались. Мировой рекорд был установлен в Париже, где на базе конструкций знаменитой Эйфелевой башни был смонтирован манометр высотой ртутного столба около 250 м, что соответствует 34 МПа. В настоящее время этот манометр разобран в связи с его бес­перспективностью.

1.1.2. Жидкостно-поршневые манометры

Очень часто к жидкостным манометрам относят приборы, измери­тельная система которых хотя и содержит в качестве одного из элемен­тов жидкость, но по принципу действия в корне отличается от жидкост­ных манометров. К таким приборам относится дифференциальный мано­метр типа „кольцевые весы" (рис. 3), состоящий из тороидального кор­пуса 1, внутренняя полость которого в верхней части разделена перего­родкой 2, а нижняя часть до половины заполнена жидкостью 4. Таким образом, корпус имеет две измерительные камеры А и Б, в которые че­рез гибкие шланги подаются измеряемые давления pl и р2. Корпус мо­жет поворачиваться относительно опоры 3, расположенной в его геомет­рическом центре. К нижней части корпуса прикреплен противовес 5.

При равенстве давлений в камерах А и Б корпус прибора располага­ется в соответствии с рис. 4, а. Если одно из давлений больше другого, например, р1 > р2 то под действием разности давлений Δр = p1 – р2, воздействующей на перегородку, корпус повернется на определенный угол α, а уровни жидкости внутри корпуса займут положения, соответствующие рис. 4, б. При этом уравнения равновесия измерительной сис­темы принимают вид

, (6)

Рис. 3. Дифференциальный манометр типа „Кольцевые весы"

где F — площадь перегородки (внутренняя площадь поперечного сечения тороида); r1 — средний радиус тороида; R2 — расстояние от оси враще­ния до центра тяжести противовеса; т — масса противовеса; g — ускоре­ние свободного падения; α — угол поворота корпуса.

Таким образом, давление определяется массой противовеса, геомет­рическими параметрами прибора и углом поворота корпуса, а роль за­полняющей измерительную систему жидкости сводится к созданию жид­костного затвора между камерами А и Б. Поэтому по виду первичного преобразования - давления в силу, действующую на перегородку, - прибор аналогичен поршневым манометрам.

Еще в большей мере сказанное относится к колокольным манометрам, применяемым в качестве образцовых и эталонных приборов. Основ­ные элементы измерительной системы манометра (рис. 4) : наполовину заполненный водой сосуд 5, цилиндрический колокол 3, подвеска 2 с чашкой 6 для наложения грузов 7, рычаг 1 весового компаратора с ука­зателем положения равновесия 8 и подвески 9 с тарировочным грузом 10. Измеряемое давление подводится под колокол трубкой 4.

Измерительной камерой прибора является внутренняя полость коло­кола, ограниченная дном и внутренней поверхностью цилиндрической части колокола и свободной поверхностью жидкости в его нижней части. При проведении измерений камера предварительно сообщается с атмо­сферным давлением и вес частично погруженного в жидкость колокола уравновешивается тарировочным грузом 10.

Рис. 4. Измерительная система манометра

Тогда при подаче в камеру измеряемого давления для сохранения положения равновесия на чашку 6 необходимо наложить грузы 7, вес которых и является мерой измеря­емого давления. При этом давление в камере будет уравновешиваться противодавлением столба жидкости в кольцевом зазоре между наруж­ной поверхностью колокола и внутренней поверхностью сосуда 5. Таким образом, роль жидкости так же, как и в вышеописанном приборе, огра­ничивается созданием жидкостного затвора для удержания давления в измерительной камере, так как составляющими сил давления на боко­вую поверхность колокола в вертикальном направлении при условии со­блюдения технологии его изготовления можно пренебречь.

1.2. Поршневые манометры

Поршневые манометры появились позже жидкостных. Впервые поршневой манометр был применен для измерения давления в 1833 г. Парротом и Ленцем (Российская Академия наук) при изучении сжимаемости воздуха и других свойств газов, причем значение давления для того времени было очень большим (10 МПа). Дальнейшее развитие поршне­вой манометрии шло, в основном, в сторону увеличения точности и верхних пре­делов измерений, а, начиная с тридцатых годов текущего столетия поршневые ма­нометры стали вытеснять жидкостные и при точных измерениях давлений, близких к атмосферному давлению.

Большой вклад в развитие поршневой манометрии внесли проф. М.К. Жохов-ский, который впервые разработал целостную теорию приборов с неуплотненным поршнем, П.В. Индрик, В.Н. Граменицкий и многие другие их последователи.

В настоящее время в нашей стране и за рубежом поршневые манометры иг­рают ведущую роль при поверке и испытаниях манометрических приборов в ши­роком диапазоне давлений от 1 кПа до десятков тысяч МПа и находят все боль­шее применение в качестве национальных государственных эталонов давления.

1.2.1. Принцип действия, основы теории и типы поршневых манометров

На рис.5 изображен простейший поршневой манометр, который состоит из цилиндрического поршня 1, притертого к цилиндру 2 с ми­нимально возможным зазором. Если на ниж­ний торец поршня действует измеряемое дав­ление р, то для его уравновешивания к порш­ню должна быть приложена сила Р. Уравнение равновесия с учетом силы трения на боковую поверхность поршня, возникшей при протека­нии жидкости или газа через зазор между поршнем и цилиндром под действием изме­ряемого давления, имеет вид

Перейти на страницу:  1  2  3  4  5  6  7  8  9  10  11  12  13