Рефераты по Физике

Магнетронные распылительные системы

Страница 2

Следует отметить, что плазма разряда существует только в области магнитной ловушки в непосредственной близости от мишени и ее форма определяется геометрией и величиной магнитного поля.

Одним из преимуществ магнетронных распылительных систем является также то обстоятельство, что захват вторичных электронов магнитной ловушкой у поверхности мишени препятствует интенсивному перегреву подложки. Что в свою очередь позволяет увеличить скорость распыления материалов, а следовательно, и их осаждения. Источниками нагрева подложки в этих системах служат энергия конденсации распыленных атомов, кинетическая энергия осаждаемых атомов, энергия отраженных от мишени нейтрализованных ионов, а также излучение плазмы. Энергия конденсации составляет 3 – 9 эВ/атом, кинетическая энергия в зависимости от распыляемого материала – от 5 (для алюминия) до 20 эВ/атом (для вольфрама), а излучение плазмы 2 – 10 эВ/атом. Суммарная тепловая энергия, рассеиваемая на подложке, и температура подложки для различных материалов, осаждаемых в цилиндрической МРС, приведены в таблице 2.2. http://printonic.ru/ картинки детские скачать - скачать картинки с изображением детей.

Таблица 2.2 – Значения тепловой энергии и температуры подложки для различных материалов [2]

Материал

Al

Cu

Ta

Cr

Au

Mo

W

Тепловая энергия,

эВ/атом

13

17

20

20

23

47

73

Темп. подл., °С

79

110

97

118

106

163

202

Во многих случаях нагрев подложки в магнетронных системах сравним, а при испарении тугоплавких материалов даже ниже, чем при методе термического испарения. Это дает возможность использовать магнетронные распылительные системы для нанесения пленок на подложки из материала с низкой термостойкостью.

Основные рабочие характеристики магнетронных распылительных систем – напряжение на электродах, ток разряда, плотность тока на мишени и удельная мощность, величина индукции магнитного поля и рабочее давление. От величины и стабильности перечисленных параметров, которые взаимно связаны между собой, зависят стабильность разряда и воспроизводимость процесса нанесения тонких пленок. Магнетронные системы относятся к низковольтным системам распыления. Напряжение питания не превышает 1000 В постоянного тока. Рабочее напряжение составляет 200 – 700 В, на мишень обычно подается отрицательный потенциал, а на анод – нулевой потенциал. Однако в магнетронных системах с плоским катодом для более полного улавливания вторичных электронов рекомендуется на анод подавать небольшое положительное смещение (40 – 50 В) [4]. В некоторых системах предусматривается подача отрицательного смещения на подложку (100 В) для реализации распыления со смещением [16].

Ток разряда зависит от многих факторов, например от рабочего напряжения, давления и рабочего газа, индукции магнитного поля, конфигурации магнетронной системы, распыляемого материала, и определяется мощностью источника питания. Плотность тока на мишень очень велика и для системы с полым цилиндрическим катодом составляет в среднем 80 мА/см2, с коническим катодом – 160 мА/см2, а с плоским катодом – 200 мА/см2, причем максимальные плотности тока в центральной части распыления могут быть значительно выше. Значения удельной мощности в магнетронных системах с полым цилиндрическим катодом достигают 40 Вт/см2, а с плоским катодом – 100 Вт/см2. Предельная допустимая мощность определяется условиями охлаждения мишени теплопроводностью распыляемого материала .

Магнетронная распылительная система может работать в диапазоне давлений от 10-2 до 1 Па и выше. Важнейшими параметрами, во многом определяющими характер разряда в ней, являются геометрия и величина магнитного поля, индукция которого у поверхности мишени 0,03 – 0,1 Тл.

Одной из основных характеристик разряда является Вольтамперная характеристика (ВАХ). Существенное влияние на нее оказывают рабочее давление (p) и индукция магнитного поля (B) [3, 6, 10].

Рисунок 2.2 – Вольтамперные характеристики магнетронных систем распыления: а) с алюминиевой мишенью размером 40´60 см при постоянном магнитном поле 0,03 Тл и различном давлении аргона; б) с алюминиевой мишенью диаметром 160 мм при постоянном давлении аргона 0,3 Па и различной индукции магнитного поля[3]

С уменьшением p ВАХ сдвигаются в область больших рабочих давлений и приближаются к линейной зависимости (смотри рисунок 2.2а). Аналогичным образом влияет и индукция магнитного поля (смотри рисунок 2.2б). Близкие к линейной зависимости наблюдаются при больших значениях В. На ВАХ разряда влияют также материал мишени (смотри рисунок 2.3а) и ее форма, которая изменяется по мере распыления материала. Образование выемки в плоской мишени приводит к сдвигу ВАХ в область меньших рабочих напряжений из-за улучшения условий локализации плазмы, причем этот сдвиг растет с увеличением p (смотри рисунок 2.3б). В этом случае определяющим является не только геометрический фактор, но и переход зоны разряда в область более сильного магнитного поля по мере распыления мишени.

Рисунок 2.3 – Вольтамперные характеристики магнетронной системы распыления: а) с плоской мишенью из различных металлов при постоянном давлении 0,5 Па и индукции магнитного поля 0,08 Тл; б) с конической новой (сплошные линии) и эродированной (штриховые линии) мишенями при индукции магнитного поля 0,06 Тл и различном давлении

Перейти на страницу:  1  2  3  4  5  6  7