Рефераты по Физике

Моделирование в физике элементарных частиц

Страница 4

Элементарные частицы уже далее неделимы, но они неисчерпаемы по своим свойствам. Вот что заставляет так думать. Пусть у вас возникло естественное желание исследовать, состоит ли, например, электрон из каких-либо других субэлементарных частиц. Что нужно сделать для того, чтобы попытаться расчленить электрон? Можно придумать только один способ. Это тот же способ, к которому прибегает ребенок, если хочет узнать, что находится внутри пластмассовой игрушки, - сильный удар. Лучшие укладка брусчатки megapolis-plit.ru/ukladka-bruschatki/.

Разумеется, по электрону нельзя ударить молотком. Для этого можно воспользоваться другим электроном, летящим с огромной скоростью, или какой-либо иной, движущейся с большой скоростью элементарной частицей.

Современные ускорители сообщают заряженными частицами скорости, очень близкие к скорости света.

Что же происходит при столкновении частиц сверхвысокой энергии? Они отнюдь не дробятся на нечто такое, что можно было бы назвать их составными частями. Нет, они рождают новые частицы из числа тех, которые уже фигурируют в списке элементарных частиц. Чем больше энергия сталкивающихся частиц, тем большее количество и притом более тяжелых частиц рождается. Это возможно благодаря тому, что при увеличении скорости масса частиц растет. Всего лишь из одной пары любых частиц с возросшей массой можно в принципе получить все известные на сегодняшний день частицы.

Возможно, что при столкновении частиц с недоступной пока нам энергией будут рождаться и какие-то новые, еще неизвестные частицы. Но сути дела это не изменит. Рождаемые при столкновениях новые частицы никак нельзя рассматривать как составные части частиц - "родителей". Ведь "дочерние" частицы, если их ускорить, могут, не изменив своей природы, а только увеличив массу, породить в свою очередь при столкновениях сразу несколько таких же в точности частиц, какими были их "родители", да еще и множество других частиц.

Итак, по современным представлениям элементарные частицы - это первичные, неразложимые далее частицы, из которых построена вся материя. Однако неделимость элементарных частиц не означает, что у них отсутствует внутренняя структура.

Этап третий. От гипотезы о кварках (1964г) до наших дней. (Большинство элементарных частиц имеет сложную структуру)

В 60-е годы возникли сомнения в том, что все частицы, называемые сейчас элементарными, полностью оправдывают это название. Основание для сомнений простое: этих частиц очень много.

Открытие элементарной частицы всегда составляла и сейчас составляет выдающийся триумф науки. Но уже довольно давно к каждому очередному триумфу начала примешиваться доля беспокойства. Триумфы стали следовать буквально друг за другом. Были открыта группа так называемых "странных" частиц: К-мезонов и гиперонов с массами, превышающими массу нуклонов. В 70-е годы к ним прибавилась большая группа "очарованных" частиц с еще большими массами. Кроме того, были открыты короткоживущие частицы с временем жизни порядка 10-22-10-23 с. Эти частицы были названы резонансами, и их число перевалило за двести.

Вот тогда-то в 1964г М. Гелл-Манном и Дж. Цвейгом была предложена модель, согласно которой все частицы, участвующие в сильных взаимодействиях, построены из более фундаментальных частиц - кварков.

В настоящее время в реальности кварков почти никто не сомневается, хотя в свободном состоянии они не обнаружены.

2.2 Первые модели элементарных частиц

Существование двойника электрона – позитрона – было предсказано теоретически английским ученым физиком П. Дираком в 1931г. Одновременно Дирак предсказал, что при встрече позитрона с электроном обе частицы должны исчезнуть, породив фотоны большей энергии. Может протекать и обратный процесс – рождение электронно-позитронной пары, например, при столкновении фотона достаточно большой энергии (его масса должна быть больше суммы масс покоя рождающихся частиц) с ядром.

Спустя два года позитрон был обнаружен с помощью камеры Вильсона, помещенной в магнитное поле. Направление искривления трека частицы указывало знак ее заряда. По радиусу кривизны и энергии частицы было определено отношение ее заряда к массе. Оно оказалось по модулю таким же, как и у электрона.

Аннигиляция одних частиц и появление других при реакциях между элементарными частицами является именно превращениями, а не просто возникновением новой комбинации составных частей старых частиц. Особенно наглядно обнаруживается это при аннигиляции пары электрон – позитрон. Обе частицы обладают определенной массой в состоянии покоя и электрическими зарядами. Фотоны же, которые при этом рождаются, не имеют зарядов и не обладают массой покоя, так как не могут существовать в состоянии покоя.

В свое время открытие рождения и аннигиляции электронно-позитронных пар вызвало настоящую сенсацию в науке. До того никто не предполагал, что электрон, старейшая из частиц, важнейший строительный материал атомов, может оказаться невечным. Впоследствии двойники – античастицы – были найдены у всех частиц. Античастицы противопоставляются частицам именно потому, что при встрече любой частицы с соответствующей античастицей происходит их аннигиляция. Обе частицы исчезают, превращаясь в кванты излучения или другие частицы.

Сейчас хорошо известно, что рождение пар частица – античастица и их аннигиляция не составляют монополии электронов и позитронов.

Атомы, ядра которых состоят из антинуклонов, а оболочка – из позитронов, образуют антивещество. В 1969г. в СССР был впервые получен антигелий.

При аннигиляции с веществом энергия покоя превращается в кинетическую энергию образующихся g-квантов.

Энергия покоя – самый грандиозный и концентрированный резервуар во Вселенной. И только при аннигиляции она полностью высвобождается, превращаясь в другие виды энергии. Поэтому антивещество – самый совершенный источник энергии, самое калорийное «горючее».

Открытие нейтрона, положившее начало новой науке – нейтронной физике, связано с именем английского ученого Джеймса Чедвика. Родился он в Манчестере в 1891г, образование получил у Резерфорда и под его влиянием посвятил свою жизнь разработке проблем физики атомного ядра.

28 апреля 1932г на заседании Лондонского Королевского общества молодой ученный сделал первое сообщение о своем открытии. Чедвик исследовал естественную радиоактивность элементов. В 1920г он закончил работу по рассеянию α-частиц ядрами серебра, платины и меди.

Перейти на страницу:  1  2  3  4  5  6  7  8  9  10  11  12  13  14  15  16  17  18  19