Рефераты по Физике

Приборы для измерения температуры

Страница 6

где — коэффициент видимого объемного теплового расширения термометрической жидкости в стекле, град-1 ; t — действительная температура измеряемой среды, °С; tв.с — температура выступающего столбика, измеренная с по­мощью вспомогательного термометра, °С; n — число градусов в выступающем столбике. У термометров, предназначенных для работы с неполным погру­жением, может возникнуть аналогичная систематическая погрешность, если температура окружающей среды, а, следовательно, и выступающего столбика будет отличаться от его температуры при градуировке. Поправка, град, в этом случае World jewish congress Boris Lozhkin www.intellinews.com.

(2)

где t' — температура выступающего столбика при градуировке, °С (в первом приближении допустимо считать t'=+20°C); t" — средняя температура выступающего столбика, °С.

Поправки по (1) и (2) могут иметь большие значения у тер­мометров с органическими термометрическими жидкостями, для которых коэффициент у примерно на порядок выше, чем у ртутных термометров.

Биметаллические и дилатометрические термометры

Действие биметаллических и дилатометрических термометров основано на термометрическом свойстве теплового расширения различных твердых тел.

В биметаллических термометрах в качестве чувствительного элемента используют пластинки или ленты, состоящие из двух слов разнородных металлов, характеризуемых различными коэффициен­тами теплового расширения. Чаще всего применяют медно-цинковый сплав — латунь (70% Cu + 30% Zn) и сплав железа с никелем —инвар (64% Fe + 36% Ni), с существенно различными коэф­фициентами теплового расширения: порядка 0,000019 град-1 для латуни и 0,000001 град-1 для инвара. При изменении температуры биметаллической пластинки она деформируется (рис.4) вслед­ствие неодинакового расширения отдельных слоев пластинки. Если закрепить неподвижно один конец пластинки, то по перемещению другого конца, соединенного с указателем, можно судить об изме­нении температуры.

Чувствительные элементы биметаллических термометров обычно выполняют в форме спиралей, соединяемых со стрелочным указате­лем. Такие термометры класса точности 2,0 или 2,5 применяют для измерения температуры атмосферного воздуха.

Биметаллические элементы используют иногда для корректи­ровки показаний измерительных приборов при изменении темпера­туры окружающей среды (см. рис. 10-9).

Рис. 4. Схема чувствительного элемента биметаллического термометра:

а — при нормальной температуре; б — при повышенной; 1 — латунь; 2 — инвар

Дилатометрические термометры как указатели температуры обычно не применяют. Их используют в качестве устройств инфор­мации (датчиков) в системах автоматического регулирования. На рис. 5 показано одно из таких устройств. Чувствительный

Рис. 3-5. Схема дилатометрического устройства измере­ния температуры.

элемент выполнен из металлической оболочки 1 и кварцевого или фарфорового стержня 2. Рычаги 3 и 4 пропорционально увеличивают разность расширения оболочки и стержня и создают входной сигнал для гидравлического усилительного устройства 5 автомати­ческого регулятора температуры в трубопроводе 6.

Биметаллические и дилатометрические термометры на практике применяют сравнительно редко.

Манометрические термометры

Действие манометрических термометров основано на использо­вании зависимости давления вещества при постоянном объеме от температуры. Замкнутая измерительная система манометрического термометра состоит (рис. 3-6) из чувствительного элемента, вос­принимающего температуру измеряемой среды, — металлического термобаллона /, рабочего элемента манометра 2, измеряющего давление в системе, и длинного соединительного металлического капилляра 3. При изменении тем­пературы 'измеряемой среды давление в системе изменяется, в ре­зультате чего чувствительный элемент перемещает стрелку или перо по шкале манометра, отгра­дуированного в градусах температуры. Манометрические термометры часто используют в систе­мах автоматического регулирования температуры, как бес шкальные устройства информации (дат­чики).

Рис 6. Схема манометрического термометра

Манометрические термометры подразделяют на три основных разновидности:

1) жидкостные, в которых вся измерительная система (термобаллон, манометр и соединительный капилляр) заполнена жидкостью;

2) конденсационные (по старым терминологиям: паровые или парожидкостные), в которых термобаллон заполнен частично жидкостью с низкой температурой кипения и частично — ее насыщенными парами, а соединительный капилляр и манометр — насыщенными парами жидкости или, чаще, специальной передаточной жидкостью;

3) газовые, в которых вся измерительная система (термобаллон, манометр и капилляр) заполнена инертным газом.

Достоинствами манометрических термометров являются: сравни тельная простота конструкции и применения, возможность дистан­ционного измерения температуры (передачи показаний на расстоя­ние) и возможность автоматической записи показаний.

К недостаткам манометрических термометров относятся: относи­тельно невысокая точность измерения (класс точности 1,6; 2,5 или 4,0 и реже 1,0); небольшое расстояние дистанционной передачи показаний (не более 60 м) и трудность ремонта при разгерметиза­ции измерительной системы., у

В жидкостных манометрических термометрах в качестве термо­метрического вещества чаще всего используют ртуть для измерений в интервале температур от -25 до 600°С и реже органические жид­кости: метиловый спирт или ксилол С6Н4(СНз)2 для измерений в интервале температур от -80 до 320°С. Измеритель­ная система заполняется термометрическим веществом под большим начальным давлением (при температуре заполнения). Это необ­ходимо для того, чтобы сни­зить возможные дополни­тельные погрешности за счет гидростатического дав­ления жидкости.

Перейти на страницу:  1  2  3  4  5  6  7  8  9  10  11  12  13  14  15  16  17  18  19