Рефераты по Физике

Люминесценция и дефектоскопия

Страница 5

4) Квантовым выходом фотолюминесценции называется отношение числа фотонов люминесцентного излучения к числу поглощенных фотонов возбу­ждающего света при фиксированной энергии последнего:

. Узи при варикозе вен нижних конечностей phlebolog.com.

Согласно закону Вавилова квантовый выход фотолюминесценции не зависит от длины волны возбуждающего света в стоксовой области (vвозб > vлюм) и резко падает в области антистоксова излучения (vвозб < vлюм).

5) Тушение свечения. Выход люминесценции очень чувствителен к внешним воздействиям, которые во многих случаях приводят к тушению свечения. Так, известно тушение люминесценции посторонними примесями, возникающее при добавлении к раствору посторонних веществ — тушителей. В результате взаимодействия возбужденных молекул люминесцентного вещества с молекулами тушителя возникает безизлучательный размен энергии возбуждения. Безизлучательные переходы развиваются и при увеличении температуры раствора, обуславливая появление температурного тушения.

В большинстве случаев увеличение концентрации также приводит к тушению свечения. При этом концентрационное тушение обычно начинает проявляться лишь при достижении некоторой пороговой концентрации, величина которой характерна для исследуемого вещества. В более разведенных растворах выход люминесценции не зависит от концентрации. Это обстоятельство может быть использовано в люминесцентном анализе при подборе оптимальных условий его проведения. Концентрационное тушение имеет двоякую природу. С одной стороны, при увеличении концентрации могут образовываться ассоциированные молекулы, не обладающие люминесцентной способностью, но поглощающие энергию возбуждения. С другой стороны, между возбужденными и невозбужденными молекулами может осуществляться индукционный перенос, или, как говорят, миграция энергии возбуждения. Такой перенос энергии возбуждения прежде всего на нелюминесцентные ассоциаты приводит к развитию концентрационного тушения.

Известны и другие виды тушения (тушение растворителем, тушение электролитами, тушение при диссоциации и ионизации молекул и т. д.). При проведении люминесцентного анализа интенсивность свечения играет очень большую роль. Поэтому учет тушения, изменяющего интенсивность люминесценции и затрудняющего анализ, является крайне важным.

6) Интенсивность свечения (затухание с квантовым выходом, близким к единице) спонтанной и метастабильной люминесценции изменяется с течением времени по экспоненциальному закону:

,

где I - интенсивность свечения в момент времени t, I0 - интенсивность свечения в момент прекращения возбуждения люминесценции, t - средняя продолжительность возбужденного состояния атомов или молекул люминофора (время, в течение которого интенсивность свечения уменьшается в е раз, т. е. в 2,7 раза).

Величина t имеет обычно порядок 10-9 – 10-8 сек. В отсутствие тушащих процессов t слабо зависит от условий и определяется в основном внутримолекулярными процессами.

7) Интенсивность рекомбинационного люминесцентного свечения изменяется с течением времени по гиперболическому закону:

,

где а и n - постоянные; величина а лежит в пределах от долей сек-1 до многих тысяч сек-1;

,

где I0 - интенсивность рекомбинационной люминесценции в момент ее возбуждения; n заключено в пределах от 1 до 2.

В других случаях затухание свечения может происходить по более сложному закону. Так, например, затухание свечения кристаллофосфоров хорошо описывается эмпирической формулой:

,

где A, b, a — постоянные, причем обычно a<2.

8) Спектром поглощения вещества называется совокупность коэффициентов поглощения, характеризующих его поглощательную способность к лучам оптического диапазона частот. Коэффициенты поглощения определяются из закона Ламберта—Бера.

Спектры поглощения люминесцирующих веществ крайне разнообразны. Одни из них имеют вид очень узких полос (растворы солей редкоземельных элементов), другие — более широких полос с четко выраженной колебательной структурой (растворы ураниловых солей), наконец, спектры поглощения многих веществ представляют собой широкие размытые полосы, структуру которых не удается выяснить даже при низких температурах (растворы красителей).

Спектры поглощения могут существенно меняться при изменении концентрации раствора, его кислотности или щелочности (величины его рН), природы растворителя, температуры и ряда других факторов.

9) Спектром люминесценции называется распределение излучаемой веществом энергии по частотам или длинам волн. Подобно спектрам поглощения, интенсивность и форма спектров люминесценции у разных веществ могут быть весьма различными, и они могут существенно изменяться при вариации тех же параметров (концентрации, величины pH раствора и т. д.)

10) Правило зеркальной симметрии спектров поглощения и люминесценции.

Для широкого круга веществ (растворов красителей, ряда ароматических и многих других соединений) выполняется установленное В. Л. Левшиным правило зеркальной симметрии спектров поглощения и излучения, согласно которому спектры поглощения и люминесценции, изображенные в функции частот, оказываются зеркально-симметричными относительно прямой, проходящей перпендикулярно оси частот через точку пересечения обоих спектров, т. е.

(1)

или

(2)

Здесь nП — частота поглощаемого света; nЛ — симметричная частота люминесценции; n0 — частота линии симметрии. При этом по оси ординат для спектров поглощения откладываются коэффициенты поглощения a, а для спектров люминесценции — квантовые интенсивности IКВ=I/n.

Перейти на страницу:  1  2  3  4  5  6  7  8  9  10  11