Рефераты по Физике

Методика формирования понятия плазма в школьном курсе физики - Курсовая работа

Страница 2

Термин плазма был введен физиологами в середине прошлого века для обозначения бесцветного жидкого компонента крови, молока или живых тканей. Кровь представляет собой красную непрозрачную жидкость, состоящую из плазмы (55 %) и взвешенных в ней клеток, форменных элементов (45 %) - эритроцитов, лейкоцитов и тромбоцитов. Плазма крови содержит 90-92 % воды и 8-10 % неорганических и органических веществ. Неорганические вещества составляют 0,9-1% (ионы К, Na, Mg, Са, Cl, P и др.). Остальное приходится на органические вещества плазмы: 6-8 % составляют белки (альбумины, глобулины, фибриноген). Около 2 % приходится на них комолекулярные органические вещества (глюкоза, аминокислоты, мочевина, мочевая кислота, липиды, креатин). Водный раствор, который по концентрации солей соответствует плазме крови, называют физиологическим раствором.

В 1923 г. американские физики И.Ленгмюр и Л.Тонкс назвали плазмой особое состояние ионизованного газа. Физиков плазма сначала интересовала как своеобразный проводник электрического тока, а также как источник света. В настоящее время мы рассматриваем физические свойства плазмы под другим углом зрения - и плазма предстает перед нами в новом облике. Во-первых, это естественное состояние вещества, нагретого до очень высокой температуры, во-вторых, это динамическая система - объект приложения электромагнитных сил. Новые подходы к изучению поведения плазмы органически связаны с большими техническими проблемами, для которых физика служит научным фундаментом. Важнейшие из них - это управляемый термоядерный синтез и магнитогидродинамическое преобразование внутренней энергии в электрическую.

Плазма (греч. plasma) – оформленное.

При очень низких температурах все вещества находятся в твёрдом состоянии. Нагревание вызывает переход вещества из твёрдое в жидкое, а затем и в газообразное….

Для более быстрого и ёмкого восприятия темы процесс возникновения плазмы можно показать на достаточно простом опыте (процесс нагревания):

Пусть в замкнутом сосуде, сделанном из очень тугоплавкого материала, находиться небольшое количество какого-либо вещества. Начнём подогревать сосуд, постепенно повышая его температуру. Если первоначально вещество, содержащееся в сосуде, было в твёрдом состоянии, то в некоторый момент оно начнёт плавиться, а при ещё более высокой температуре испариться и образовавшийся газ равномерно заполнит весь объём. Когда температура достигнет достаточно высокого уровня, все молекулы газа (если это молекулярный газ) диссоциируют, т.е. распадутся на отдельные атомы. В результате в сосуде будет содержаться газообразная смесь элементов, из которых состоит вещество. Атомы этих элементов будут быстро и беспорядочно двигаться, испытывая время от времени столкновения между собой.

Естественно, возникает вопрос: как будут изменяться свойства

вещества, если нагревание продолжиться дальше и температура выйдет за пределы нескольких тысяч градусов? Конечно, при очень высокой температуре изображаемую нами картину нагревания вещества в тугоплавком сосуде можно представить только теоретически, т.к. предел термической стойкости даже самых тугоплавких материалов сравнительно невелик – 3 000 – 4 000 градусов. Допустим, что стенки сосуда способны противостоять сколь угодно высокой температуре, не разрушаясь и не испытывая никаких изменений. Итак, нагревание продолжается. В таком случае уже при 3 000 – 5 000 градусов мы сможем заметить признаки проявления новых процессов, которые будут связаны с изменением свойств самих атомов вещества.

Как известно, каждый атом состоит из положительно заряженного ядра, в котором сосредоточена почти вся масса атома, и электронов, вращающихся вокруг ядра и образующих электронную оболочку атома. Эта оболочка и в особенности её внешний слой, содержащий электроны, сравнительно слабо связанные с ядром, обладают довольно хрупкой структурой. При столкновении атома с какой-либо быстро движущейся частицей один из внешних электронов может быть оторван от атома, который превратиться в положительно заряженный ион. Именно этот процесс ионизации и будет наиболее характерен для рассматриваемой стадии нагревания вещества. При достаточно высокой температуре газ перестаёт быть нейтральным: в нём появляются положительные ионы и свободные электроны, оторванные от атомов.

В условиях, когда нагретое вещество находиться в тепловом равновесии с окружающей средой (в нашем случае со стенками воображаемого идеального сосуда) при температуре в несколько десятков тысяч градусов, подавляющая часть атомов в любом газе ионизирована, и нейтральные атомы практически отсутствуют. Например, при T= 30 000 градусов на 20 000 положительных ионов приходиться всего лишь один нейтральный атом.

Электронная оболочка атома водорода содержит только один электрон, и поэтому с потерей атома ионизация заканчивается. В атомах других элементов электронная оболочка имеет более сложную структуру. В её состав входят электроны, обладающие разной степенью связи с атомом в целом. Электроны, принадлежащие к внешним слоям оболочки, отрываются сравнительно легко. Как уже говорилось выше, при температуре порядка 20 000 – 30 000 градусов почти не должно оставаться примесей нейтральных атомов. Это означает, что можно говорить о полной ионизации газа. Однако это не означает, что процесс ионизации закончился, т.к. положительные ионы в упомянутой области температур сохраняют значительную часть своего «электронного одеяния». Чем больше порядковый номер элемента в периодической системе Менделеева, тем больше число электронов в атоме и тем прочнее связаны электроны внутренних слоёв оболочки с атомным ядром. Поэтому окончательная ионизация тяжёлых элементов только при очень высоких температурах (десятки миллионов градусов). При этом газ остаётся в целом нейтральным, т.к. процессы ионизации не создают избытка в зарядах того или иного знака. Таким образом, при достаточно больших температурах происходит ионизация газа за счёт столкновения быстродвижущихся атомов или молекул.

Далее можно ввести словесное определение понятия «плазма»:

Перейти на страницу:  1  2  3  4  5  6  7  8  9  10