Энергетические процессы в волоконно-оптических системах передачи - Дипломная работа
Iвых (А) = Ро вх (Вт)Rі(А/Вт),Ро вх (Вт), Рэ вых (Вт) = (А)Rн(Ом),
pэ вых (дБм) = 2pо вх (дБм) + ri(дБ) + rн(дБ) – 30 дБ, (3.6)
pо вх (дБм) = [pэ вых (дБм) – ri(дБ) – rн(дБ) + 30 дБ]/2, (3.7)
Выводы
Большинство соотношений, полученных в этой главе, касались связи между поступающей оптической мощностью и электрическим током, генерируемым в фотоприемнике. Эта связь имеет вид: i = riP, где ri – токовый отклик, равный 0,5…0,7 A/Вт для p–i–n-диодов и примерно в сто раз больше для лавинных детекторов.
В качестве детектора в волоконной системе связи используется или лавинный или p–i–n-фотодиод. Последний прибор дешевле, менее чувствителен к изменениям температуры и требует намного меньшего напряжения обратного смещения, чем ЛФД. Быстродействие этих двух приборов сравнимо, так что p–i–n-диод предпочтителен в большинстве систем. Лавинный фотодиод необходим, когда система ограничена потерями, что имеет место в дальних линиях связи. Предположим, что приемное устройство с ЛФД может обнаружить сигнал с уровнем мощности на 9 дБ ниже, чем в случае приемного устройства с p–i–n-диодом. Если коэффициент затухания волокна равен 3 дБ/км, то линия связи с ЛФД может быть на 3 км длиннее, чем с p–i–n-диодом. Если необходимы повторители, то расстояние между ними может быть увеличено на 3 км при использовании ЛФД.
Хотя имеется много детекторов с различными характеристиками, полезно рассмотреть типичные значения наиболее важных параметров фотодиодов, сведенных в табл. 3.2. Токовый отклик в таблице приведен для области длин волн, в которой используется детектор, т. е. для l @ 0,8 мкм для кремния и 1,3 и 1,5 мкм для германия и InGaAs соответственно. Токовый отклик уменьшается, если длина волны приближается к границам области спектральной чувствительности.
Таблица 3.2 Типовые параметры полупроводниковых фотодиодов
Материал |
Структура | tн, нс |
Область чувстви-тельности, мкм | ri, А/Вт | Iт, нА |
М |
Кремний | p–i–n | 0,5 | 300…1100 | 0,5 | 1 | 1 |
Германий | p–i–n | 0,1 | 500…1800 | 0,7 | 200 | 1 |
InGaAs | p–i–n | 0,3 | 900…1700 | 0,6 | 10 | 1 |
Кремний | ЛФД | 0,5 | 400…1000 | 75 | 15 | 150 |
Германий | ЛФД | 1,0 | 1000…1600 | 35 | 700 | 50 |
InGaAs | ЛФД | 0,25 | 1000…1700 | 12 | 100 | 20 |
4 Моделирование электро-электрического преобразователя (ЭЭП).
Ряд физических явлений приводит к ухудшению сигналов при передаче по волоконной линии связи. Выше было рассмотрено, как происходит искажение формы сигнала в волокне и как это явление ограничивает информационную емкость и дальность связи. Показано, что уменьшение сигналов происходит вследствие затухания в волокне, в соединителях и из-за потерь в распределительных устройствах сети. Очевидно, что только определенное затухание может быть внесено трактом передачи прежде, чем мощность на приемной стороне станет слишком малой для точного обнаружения сигнала. С другой стороны, известно, что с помощью электронных усилителей всегда можно увеличить сигнал до требуемого уровня. Последнее предположение было бы верным, если бы не существовало помехи, называемой шумом. Шум ухудшает сигнал и всегда существует в электронных цепях. При усилении полезного сигнала неизбежно происходит усиление входного шума. К тому же сам усилитель вносит дополнительный шум в усиливаемый сигнал. По этой причине усиление не может увеличить отношение мощности сигнала к мощности шума. Как только мощность принимаемого сигнала уменьшается до уровня мощности шума, сигнал становится малым и неразличимым в шумах. Таким образом, ослабление сигнала в линейном тракте, в конечном счете, ограничивает дальность передачи по волоконной линии.
Перейти на страницу: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19