Рефераты по Физике

Что изучает физика?

Страница 35

Принцип Паули позволил объяснить закономерности заполнения электронами оболочек в многоэлектронных атомах, дать обоснование периодической системе элементов Менделеева. Этот принцип, выражает специфическое свойство частиц, которые ему подчиняются. И сейчас трудно понять, почему две тождественные частицы взаимно запрещают друг другу занимать одно и то же состояние. Подобного типа взаимодействия в классической механике не существует. Какова его физическая природа, каковы физические источники запрета - проблема, ждущая разрешения. Сегодня ясно одно: физическая интерпретация принципа запрета в рамках классической физики невозможна.

Важным выводом квантовой статистики является положение о том, что частица, входящая в какую-либо систему, не тождественна такой же частице, но входящей в систему другого типа или свободную. Отсюда следует важность задачи выявления специфики материального носителя определенного свойства систем.

ж) Квантовая теория поля

Квантовая теория поля представляет собой распространение квантовых принципов на описание физических полей в их взаимодействиях и взаимопревращениях. Квантовая механика имеет дело с описанием взаимодействий сравнительно малой энергии, при которых число взаимодействующих частиц сохраняется. При больших энергиях взаимодействия простейших частиц (электронов, протонов и т.д.) происходит их взаимопревращение, т.е. одни частицы исчезают, другие рождаются, причем число их меняется. Большинство элементарных частиц нестабильно, спонтанно распадается до тех пор, пока не образуются стабильные частицы - протоны, электроны, фотоны и нейтроны. При столкновениях элементарных частиц, если энергия взаимодействующих частиц достаточно велика, происходит множественное рождение частиц различного спектра. Поскольку квантовая теория поля предназначена для описания процессов при высоких энергиях, поэтому должна удовлетворять требованиям теории относительности.

Современная квантовая теория поля включает три типа взаимодействия элементарных частиц: слабые взаимодействия, обусловливающие главным образом распад неустойчивых частиц, сильные и электромагнитные, ответственные за превращение частиц при их столкновении.

Квантовая теория поля, описывающая превращение элементарных частиц, в отличие от квантовой механики, описывающей их движение, не является последовательной и завершенной, она полна трудностей и противоречий. Наиболее радикальным способом их преодоления считается создание единой теории поля, в основу которой должен быть положен единый закон взаимодействия первичной материи - из общего уравнения должен выводиться спектр масс и спинов всех элементарных частиц, а также значения зарядов частиц. Таким образом, можно сказать, что квантовая теория поля ставит задачу выработки более глубокого представления об элементарной частице, возникающей за счет поля системы других элементарных частиц.

Взаимодействие электромагнитного поля с заряженными частицами (главным образом электронами, позитронами, мюонами) изучается квантовой электродинамикой, в основе которой лежит представление о дискретности электромагнитного излучения. Электромагнитное поле состоит из фотонов, обладающих корпускулярно-волновыми свойствами. Взаимодействие электромагнитного излучения с заряженными частицами квантовая электродинамика рассматривает как поглощение и испускание частицами фотонов. Частица может испустить фотоны, а затем поглотить их.

Итак, отход квантовой физики от классической заключается в отказе от того, чтобы описывать индивидуальные события, происходящие в пространстве и времени, и использовании статистического метода с его волнами вероятности. Цель классической физики заключается в описании объектов в пространстве и времени и в формировании законов, которые управляют изменением этих объектов во времени. Квантовая физика, имеющая дело с радиоактивным распадом, дифракцией, испусканием спектральных линий и тому подобными явлениями, не может удовлетвориться классическим подходом. Суждение типа "такой-то объект имеет такое-то свойство", характерное для классической механики, в квантовой физике заменяется суждением типа "такой-то объект имеет такое-то свойство с такой-то степенью вероятности". Таким образом, в квантовой физике имеют место законы, управляющие изменениями вероятности во времени, в классической же физике мы имеем дело с законами, управляющими изменениями индивидуального объекта во времени. Разные реальности подчиняются различным по характеру законам.

Квантовая физика в развитии физических идей и вообще стиля мышления занимает особое место. К числу величайших созданий человеческого ума относится, несомненно и теория относительности - специальная и общая, представляющая собой новую систему идей, объединившую механику, электродинамику и теорию тяготения и давшую новое понимание пространства и времени. Но это была теория, которая в определенном смысле была завершением и синтезом физики XIX века, т.е. она не означала полного разрыва с классическими теориями. Квантовая же теория порывала с классическими традициями, она создала новый язык и новый стиль мышления, позволяющий проникать в микромир с его дискретными энергетическими состояниями и дать его описание с помощью введения характеристик, отсутствовавших в классической физике, что в конечном счете позволило понять сущность атомных процессов. Но вместе с тем квантовая теория внесла в науку элемент непредсказуемости, случайности, чем она отличалась от классической науки.

4. Концепции физики атомных и ядерных процессов

а) Модели атома

Решающим моментом в развитии теории строения атома было открытие электрона. Наличие в электрически нейтральном атоме отрицательно заряженной частицы побуждало предполагать наличие частицы с положительным зарядом. Модель Д.Томсона, не будучи в состоянии объяснить характер атомных спектров, излучаемых атомами, уступила место планетарной модели Э.Резерфорда. Исследуя рассеяние атомами вещества альфа-частиц, излучаемых радиоактивными веществами, он открыл атомное ядро и построил планетарную модель атома. Оказалось, что атом состоит не из положительно заряженного облака, в котором (подобно изюму в булке) находятся электроны, как это предполагал Д.Томсон, а из электрона и ядра размером около 10-13см., в котором сосредоточена почти вся масса атома. Атом подобен Солнечной системе: в центре него находится тяжелое ядро, вокруг него вращаются электроны. Однако, согласно электродинамике Максвелла, такой атом не может быть устойчивым: двигаясь по круговым (или эллиптическим) орбитам, электрон испытывает ускорение, а поэтому он должен излучать электромагнитные волны, несущие энергию. Потеря энергии приведет электрон к падению на ядро. Таким образом, подобный атом не может быть устойчивым, а потому в реальности не может существовать. Таким образом, классическая физика не могла найти объяснения устойчивости атомов.

Перейти на страницу:  1  2  3  4  5  6  7  8  9  10  11  12  13  14  15  16  17  18  19  20  21  22  23  24  25  26  27  28  29  30  31  32  33  34  35  36  37  38  39  40  41  42  43