Рефераты по Физике

Что изучает физика?

Страница 29

в) Общая теория относительности

Специальная теория относительности имеет дело с инерциальными системами координат, принцип относительности рассматривается применительно к прямолинейному и равномерному движению. Что же касается непрямолинейного или ускоренного движения, то принцип относительности в его прежней формулировке здесь оказывается несправедливым, ибо в движущейся ускоренной системе координат механические, оптические и электромагнитные явления протекают не так, как в инерциальных системах отсчета. Правильное описание этих физических явлений, учитывающее влияние на них ускорения, оказалось возможным на основе использования криволинейных координат в четырехмерном пространстве (четырехмерном пространственно-временном континууме Минковского). Эйнштейн предположил, что особенность сил тяготения заключается в том, что они всегда пропорциональны массе тела, на которое они действуют. Отсюда следовало, что все тела при одних и тех же начальных условиях движутся в поле тяготения независимо от массы или заряда, т.е. их траектория движения не зависит от свойств движущегося тела, а определяется свойствами поля тяготения. Это позволяет влияние поля тяготения, действующего в определенной части пространства, учитывать путем введения локальной кривизны четырехмерного пространства. В специальной теории относительности четырехмерный пространственно-временной континуум является эвклидовым (плоским). Можно предположить, что четырехмерное пространство может быть и неэвклидовым, т.е. обладать переменной кривизной. В этом случае определение тела в пространстве возможно лишь с помощью криволинейной системы координат. Таким образом, под действием сил тяготения тела изменяют свои размеры и время течет в зависимости от величины этих сил, т.е. поле тяготения меняет свойства пространства и времени. Электромагнитное поле существует в пространстве и времени, а гравитационное поле выражает геометрию пространства и времени. В соответствии с общей теорией относительности геометрия Евклида применима лишь к пустым пространствам, где нет тяжелых тел. Вблизи же тяжелых тел пространство изогнуто.

Общая теория относительности - общая физическая теория пространства, времени и тяготения - явилась новым этапом в развитии теории тяготения. Эйнштейн характеризовал отличие новой теории тяготения от старой следующим образом:

"1. Гравитационные уравнения общей теории относительности могут быть применены к любой системе координат. Выбрать какую-либо особую систему координат в специальном случае - дело лишь удобства. Теоретически допустимы все системы координат. Игнорируя тяготение, мы автоматически возвращаемся к инерциальной системе специальной теории относительности.

2. Ньютонов закон тяготения связывает движение тела здесь и теперь с действием другого тела в то же самое время на далеком расстоянии. Этот закон стал образцом для всего механического мировоззрения. Но механическое мировоззрение потерпело крах. В уравнениях Максвелла мы создали новый образец для законов природы. Уравнения Максвелла суть структурные законы. Они связывают события, которые происходят теперь и здесь, с событиями, которые происходят немного позднее и в непосредственном соседстве. Они суть законы, описывающие электромагнитное поле. Наши новые гравитационные уравнения суть также структурные законы, описывающие изменение поля тяготения. Схематически мы можем сказать: переход от ньютоновского закона тяготения к общей теории относительности до некоторой степени аналогичен переходу от теории электрических жидкостей и закона Кулона к теории Максвелла.

3. Наш мир неевклидов. Геометрическая природа его образована массами и их скоростями. Гравитационные уравнения общей теории относительности стремятся раскрыть геометрические свойства нашего мира."[13]

Итак, механическая картина мира оказалась несостоятельной в силу того, что было невозможно объяснить все явления, исходя из предположения о действии между неизменными частицами простых сил. Попытки перехода от механических представлений к понятию поля были успешными в области электромагнитных явлений. Структурные законы, сформулированные для электромагнитного поля, связали события, смежные в пространстве и времени. Это были законы специальной теории относительности. Общая теория относительности сформулировала структурные законы, описывающие поле тяготения между материальными телами, она обратила внимание на ту роль, которую играет геометрия в описании физической реальности.

В настоящее время специальная теория относительности подтверждена экспериментально. Так. например, предсказанное этой теорией увеличение массы электронов при приближении их к скорости света подтвердилось неоднократно. Эквивалентность массы и энергии также доказана экспериментами в ядерной физике. Что же касается общей теории относительности, то столь же утвердительные экспериментальные доказательства ее истинности отсутствуют. Многие физики пока не считают достаточно утвердительными факты, приводимые в ее пользу : малое вековое смещение перигелия Меркурия, слабое отклонение проходящих вблизи Солнца световых лучей интерпретируются по-разному. Более убедительным представляется аргумент, связанный с измерением красного смещения спектральных линий, которые излучаются спутником Сириуса. Однако единственный аргумент не является доказательством достоверности. Данная теория не является законченной. Существуют различные точки зрения на понимание сущности общей теории относительности, отличные от эйнштейновской. Вместе с тем данная теория является одним из самых выдающихся теоретических построений, демонстрирующих внутреннюю логическую стойкость и вносящих в физику множество многообразных идей.

Завершая данный раздел, важно зафиксировать еще раз следующий факт. Существуют вещество и поле как различные физические реальности. Попытки физиков XIX века построить физику на основе только понятия вещества оказались несостоятельными. Построить физику на основе лишь понятия поля пока не удалось. Так что во всех теоретических построениях приходится признавать обе реальности. Но в связи с этим встает проблема взаимодействия элементарных частиц с полем. Попытки решения этой проблемы приводят к квантовой физике.

Перейти на страницу:  1  2  3  4  5  6  7  8  9  10  11  12  13  14  15  16  17  18  19  20  21  22  23  24  25  26  27  28  29  30  31  32  33  34  35  36  37  38  39  40  41  42  43