Ядерный магнитный резонанс (ЯМР)
Рассматриваемая здесь модель, естественно, не может объяснить ни наличие магнитного момента у нейтральной частицы (например, у нейтрона), ни отрицательных магнитных моментов некоторых ядер. Тем не менее, изучение классического движения магнитного диполя в магнитном поле позволяет получить дополнительные (по сравнению с квантово-механическим рассмотрением) сведения о природе магнитного резонансного поглощения, особенно при рассмотрении нестационарных явлений. Недостатки классической модели указывают на сложность структуры ядра: полный угловой момент ядра получается в результате сложения в различных комбинациях орбитальных и спиновых движений частиц, входящих в состав ядра. Это сложение аналогично связи спиновых и орбитальных моментов электронов в атомах и молекулах.
 Выражение 2.3 позволяет записать классическое уравнение движения магнитного момента  в векторной форме следующим образом:
в векторной форме следующим образом: 
 d /dt=g[
/dt=g[
 ], (2.4)
], (2.4) 
где  –напряженность внешнего магнитного поля.
–напряженность внешнего магнитного поля. 
 Если в отсутствии магнитного поля вращать вектор  с угловой скоростью
с угловой скоростью  , то, в соответствии с законом Ньютона для вращательного движения, выражение для d
, то, в соответствии с законом Ньютона для вращательного движения, выражение для d /dt будет иметь вид:
/dt будет иметь вид: 
 d /dt=[
/dt=[
 ]. (2.5)
]. (2.5) 
 Из сопоставления выражений 2.4 и 2.5 следует, что действие магнитного поля  в точности эквивалентно вращению момента с угловой скоростью
в точности эквивалентно вращению момента с угловой скоростью  =-g
=-g (2.6), т.е. ω=gH, или n=gH/2p (2.7), здесь n [Гц] ,H [Э] (уместно вспомнить, что [ab]=-[ba]).
(2.6), т.е. ω=gH, или n=gH/2p (2.7), здесь n [Гц] ,H [Э] (уместно вспомнить, что [ab]=-[ba]). 
 Таким образом, в постоянном магнитном поле вектор магнитного момента будет прецессировать вокруг направления вектора  с постоянной угловой скоростью -g
с постоянной угловой скоростью -g независимо от направления вектора
независимо от направления вектора  , т.е. от угла между осью вращения частицы и направлением поля (рис.1).Угловой скоростью такой прецессии называют ларморовой частотой, а выражение 2.6 – формулой Лармора.
, т.е. от угла между осью вращения частицы и направлением поля (рис.1).Угловой скоростью такой прецессии называют ларморовой частотой, а выражение 2.6 – формулой Лармора. 
 Если перейти к системе координат, вращающейся равномерно с угловой скоростью -g , то при отсутствии других магнитных полей вектор магнитного момента
, то при отсутствии других магнитных полей вектор магнитного момента  в этой системе координат будет оставаться неизменным по величине и направлению. Другими словами, во вращающейся системе координат постоянное магнитное поле как будто отсутствует.
в этой системе координат будет оставаться неизменным по величине и направлению. Другими словами, во вращающейся системе координат постоянное магнитное поле как будто отсутствует. 
 
 
Рис.1. Прецессия магнитного момента в магнитном поле  
 
 Допустим теперь, что кроме поля  введено другое, более слабое поле
введено другое, более слабое поле  1, постоянное по величине и равномерно вращающееся в плоскости, перпендикулярной направлению
1, постоянное по величине и равномерно вращающееся в плоскости, перпендикулярной направлению  (рис.1). Если скорость вращения поля
(рис.1). Если скорость вращения поля  1 не равна частоте ларморовой прецессии, то это поле будет вращаться и в упомянутой выше вращающейся системе координат. Наличие поля приводит к появлению момента сил [
1 не равна частоте ларморовой прецессии, то это поле будет вращаться и в упомянутой выше вращающейся системе координат. Наличие поля приводит к появлению момента сил [
 1], который стремится повернуть ядерный момент в плоскость, перпендикулярную
1], который стремится повернуть ядерный момент в плоскость, перпендикулярную  . Если направление
. Если направление  1 во вращающейся системе координат меняется, то направление соответствующего момента сил будет быстро меняться, и единственным результатом будут слабые периодические возмущения прецессии магнитного момента.
1 во вращающейся системе координат меняется, то направление соответствующего момента сил будет быстро меняться, и единственным результатом будут слабые периодические возмущения прецессии магнитного момента. 
 Если, однако, само поле  1 вращается с ларморовой частотой, то во вращающейся системе координат оно будет вести себя подобно постоянному полю. Поэтому направление момента сил будет оставаться неизменным, что вызовет сильные колебания направления магнитного момента
1 вращается с ларморовой частотой, то во вращающейся системе координат оно будет вести себя подобно постоянному полю. Поэтому направление момента сил будет оставаться неизменным, что вызовет сильные колебания направления магнитного момента , т.е. большие изменения угла между
, т.е. большие изменения угла между  и
и  0. При изменении угловой скорости вращения поля
0. При изменении угловой скорости вращения поля  1 колебания с наибольшей амплитудой возникают при совпадении этой скорости с ларморовой частотой. В этом случае говорят о явлении резонанса.
1 колебания с наибольшей амплитудой возникают при совпадении этой скорости с ларморовой частотой. В этом случае говорят о явлении резонанса. 
 Аналогичное явление резонанса должно наблюдаться, когда направление поля  1 фиксировано, а величина его меняется по синусоидальному закону с частотой, близкой к частоте ларморовой прецессии. Это происходит потому, что такое поле можно представить в виде суперпозиции двух равных полей, вращающихся с равными угловыми скоростями в противоположных направлениях (рис.2). При этом поле, вращающееся в направлении, противоположном направлению ларморовой прецессии, не будет оказывать влияния на резонанс.
1 фиксировано, а величина его меняется по синусоидальному закону с частотой, близкой к частоте ларморовой прецессии. Это происходит потому, что такое поле можно представить в виде суперпозиции двух равных полей, вращающихся с равными угловыми скоростями в противоположных направлениях (рис.2). При этом поле, вращающееся в направлении, противоположном направлению ларморовой прецессии, не будет оказывать влияния на резонанс. 
Перейти на страницу: 1 2 3 4 5 6 7 8 9 10 11 12
