Рефераты по Физике

Сжижение газов

Страница 2

Для сжижения газа в промышленных масштабах чаще всего применяются циклы с детандерами (рис. 4), т. к. расширение газов с производством внешней работы — наиболее эффективный метод охлаждения.

Рис.4

В самом детандере жидкость обычно не получают, ибо технически проще проводить само сжижение в дополнительной дроссельной ступени. После сжатия в компрессоре (1—2) и предварительного охлаждения в теплообменнике (2—3) поток сжатого газа делится на 2 части: часть М отводится в детандер, где, расширяясь, производит внешнюю работу и охлаждается (3—7). Охлажденный газ подаётся в теплообменник, где понижает температуру оставшейся части сжатого газа 1 — М, которая затем дросселируется и сжижается. Теоретически расширение в детандере должно осуществляться при постоянной энтропии (3—6). Однако из-за потерь расширение протекает по линии 3—7. Для увеличения термодинамической эффективности процесса сжижения газа иногда применяют несколько детандеров, работающих на различных температурных уровнях.

Циклы с тепловыми насосами обычно используются (наряду с детандерными и дроссельными циклами) при сжижения газа с помощью холодильно-газовых машин, которые позволяют получать температуры до 12 К, что достаточно для сжижения всех газов, кроме гелия (см. табл.). Для сжижения гелия к машине пристраивается дополнительная дроссельная ступень.

Подвергаемые сжижению газы должны очищаться от паров воды, масла и др. примесей (например, воздух — от углекислоты, водород — от воздуха), которые при охлаждении могут затвердеть и закупорить теплообменную аппаратуру. Поэтому узел очистки газа от посторонних примесей — необходимая часть установок сжижения газа.

Значения температуры кипения Ткип (при 760 мм. рт. ст.), критической температуры ТК, минимальной Lmin и действительной LД работ сжижения некоторых газов:

Газ

Ткип, К

ТК, К

Lmin, квт•ч/кг

Lд, квт•ч/кг

Азот

Аргон

Водород

Воздух

Гелий

Кислород

Метан

Неон

Пропан

Этилен

77,4

87,3

20,4

78,8

4,2

90,2

111,7

27,1

231,1

169,4

126,2

150,7

33,0 132,5

5,3

154,2

191,1

44,5

370,0

282,6

0,220

0,134

3,31

0,205

1,93

0,177

0,307

0,37

0,04

0,119

1,2—1,5

0,8—0,95

15—40

1,25—1,5

15—25

1,2—1,4

0,75—1,2

3—4

~ 0,08

~ 0,3

Сжижение (конденсацию) газов возможно осуществить лишь после их охлаждения до температур, меньших Тк.

Детандер (от франц. détendre - ослаблять), машина для охлаждения газа путём его расширения с отдачей внешней работы. Детандер относится к классу расширительных машин, но применяется главным образом не с целью совершения внешней работы, а для получения холода. Расширение газа в детандере - наиболее эффективный способ его охлаждения. Детандер используется в установках для сжижения газов и разделения газовых смесей методом глубокого охлаждения, в криогенных рефрижераторах, в установках, имитирующих высотные и космические условия, в некоторых системах кондиционирования воздуха и т.д.

Наиболее распространены поршневые детандеры. и турбодетандеры :

Поршневой детандер

Поршневые детандеры - машины объёмного периодического действия, в которых потенциальная энергия сжатого газа преобразуется во внешнюю работу при расширении отдельных порций газа, перемещающих поршень. Они выполняются вертикальными и горизонтальными, одно- и многорядными. Торможение поршневых детандеров осуществляется электрогенератором и реже компрессором.

Применяются в основном в установках с холодильными циклами высокого 15-20 Мн/м2 (150-200 кгс/см2) и среднего 2-8 Мн/м2 (20-80 кгс/см2) давлений для объёмных расходов газа при температуре и давлении на входе в машину (физических расходов) 0,2-20 м3/ч.

Центростремительный реактивный турбодетандер

Турбодетандеры - лопаточные машины непрерывного действия, в которых поток проходит через неподвижные направляющие каналы (сопла), преобразующие часть потенциальной энергии газа в кинетическую, и систему вращающихся лопаточных каналов ротора, где энергия потока преобразуется в механическую работу, в результате чего происходит охлаждение газа.

Они делятся по направлению движения потока на центростремительные, центробежные и осевые; по степени расширения газа в соплах - на активные и реактивные; по числу ступеней расширения - на одно- и многоступенчатые. Наиболее распространён реактивный одноступенчатый центростремительный детандер разработанный П. Л. Капицей. Торможение турбинных детандеров осуществляется электрогенератором, гидротормозом, нагнетателем, насосом.

Перейти на страницу:  1  2  3  4  5  6