Рефераты по Физике

Расширяющася Вселенная

Страница 5

4. Расширение Вселенной в прошлом: начало расширения.

Как меняется расширение Вселенной с течением времени?

Снова, как в пункте 2, выделим мысленно в однородном веществе Вселенной шар. Будем следить за изменением размеров этого шара, поверхность которого проходит через одни и те же галактики. Расширение управляется законом всемирного тяготения. Ускорение (отрицательное, т.е. замедление), которое испытывают галактики на поверхности шара, описывается формулой (6)

А ═ – GM/R2

Эта формула позволяет вычислить точную зависимость радиуса шара от времени. Проследим эту зависимость качественно.

Во-первых, отметим следующую важную особенность ускорения, описанного выше. Выразим массу шара М через плотность вещества ρ и объем шара 4/3 πR3, и подставим в формулу для ускорения. В результате получим

а = -4/3 π G ρ R . (7)

Это уравнение показывает, что ускорение а прямо пропорционально расстоянию. Итак, в настоящий момент времени и скорости удаления галактик и ускорение (замедление) пропорциональны расстоянию. Но если пропорциональна расстоянию и скорость и ее изменение, то, значит, в моменты времени следующие за настоящим, также сохранится пропорциональность скорости расстоянию. Таким образом, в модели Фридмана всегда скорости разбегания галактик пропорциональны расстоянию, только коэффициент пропорциональности меняется с течением времени. Расширение тормозится, и раньше этот коэффициент был больше. Подобным же образом меняется расстояние между любыми двумя далекими галактиками во Вселенной. Только в соответствии с тем, больше это расстояние сегодня, чем радиус шара R, или меньше, график должен быть подобным образом увеличен или уменьшен. Такие графики изображены на рисунке 5.

Рис.5 Изменение с течением времени расстояния между галактиками. Разные кривые соответствуют разным галактикам: t0 – сегодняшний момент, О – начало расширения

расстояние

0

В прошлом радиус шара R был меньше. Кривая изогнута в соответствии с тем, что расширение происходит с замедлением силами тяготения. Штриховой линией на рисунке 5 изображены графики для других галактик, расстояние до которых сегодня больше или меньше, чем радиус R сегодня. Они отличаются от первого графика тем, что вертикальные расстояния умножены или разделены на одно и то же число. Самой важной особенностью графиков является то, что в некоторый момент времени в прошлом все расстояния обращались в нуль. Это был момент начала расширения Вселенной. Как давно это было? Как далеко точка О на рисунке 5 от точки Т0? Ответ зависит от скорости расширения сегодня (от постоянной Хаббла Н), т.е. от наклона кривой на рисунке 5 в сегодняшний момент, и от изогнутости кривой. Последняя определяется ускорением тяготения, т.е. по формуле 7 определяется плотностью материи во Вселенной. Если бы тяготение не замедляло расширение (допустим, плотность вещества исчезающе мала и замедлением а можно пренебречь), то галактики разлетались бы по инерции с постоянной скоростью. Вместо искривленных линий мы получим картину прямых линий рис. 8. В этом случае время, протекшее с начала расширения, определяется только постоянной Хаббла и равно Т = 1/Н ≈1/75 км/(c*Мпк) = 13* 109 лет. (8)

Возможные неопределенности в значении Н составляют 50 км/(c*Мпк)‹ Н ‹ 75 км/(c*Мпк). Это ведет к неопределенности времени t:

10*109 лет ‹ t ‹ 20*109 лет. (9)

Из-за конечного значения плотности вещества во Вселенной имеются силы тяготения, тормозящие расширение и несколько уменьшающие t (см. пунктирную кривую на рис. 6).

Рис.6 То же, что и на рисунке 6, при исчезающе малой плотности вещества во Вселенной. Для сравнения пунктиром дана кривая, которая на рис.5 была изображена сплошной линией.

К сожалению, величина средней плотности Вселенной определена не точно. Сравнительно легче учесть вещество, входящее в галактики. Массы галактик определяются по движению звезд и других светящихся объектов в них. Если известны скорости и размеры галактик, то масса вычисляется на основе ньютоновской механики и закона тяготения. Зная число галактик, находящихся в единице объема пространства и их массы, можно вычислить среднюю плотность материи во Вселенной, входящей в галактики. Плотность этого вещества, усредненная по всему объему, составляет примерно

ρ ≈ 3*10-31г/см3. Но в пространстве между галактиками можно встретить вещество, которое очень трудно обнаружить, так как оно практически не излучает и не поглощает свет. Это может быть, например ионизированный газ между галактиками, слабо светящиеся или потухшие звезды. Наконец во Вселенной может быть много нейтрино – частицы, которые очень трудно реагируют с другими веществами, и поэтому их очень трудно обнаружить. Возможно также наличие гравитационных и других полей, предсказанных теорией Эйнштейна. Есть между галактиками и другие виды материи. Учесть их все крайне сложно. Наиболее вероятные пределы, в которых заключено значение средней плотности всех видов материи, есть 5*10-29г/см3-3*10-31 г/см3. При указанной плотности тяготение очень мало влияет на оценку t , приведенную выше. Таким образом, момент начала расширения Вселенной отстоит от настоящего момента на 10-20 миллиардов лет. Любопытно, что возраст Земли, определенный по радиоактивному распаду веществ, равен 5*109 лет. Используя возраст Земли, советские физики Я.Б. Зельдович и Я.А. Смородинский дали верхний предел плотности для всех трудно наблюдаемых форм материи во Вселенной. Дело в том, что возраст Земли заведомо меньше времени, прошедшего с начала расширения. А если так, то максимальная изогнутость кривой на рис. 6 может быть такой, что точка начала расширения как раз соответствует возрасту Земли.

Перейти на страницу:  1  2  3  4  5  6  7