Рефераты по Физике

Современная физическая картина мира

Страница 4

Другой результат, полученный в теории Эйнштейна, — наличие красного смещения в спектрах небесных тел — был подтвержден рядом опытов 1923—1926 гг. при наблюдении спектров Солнца и обладающего чрезвычайно большим полем тяготения спутника Сириуса

Долгое время экспериментальных подтверждений ОТО было мало: изменения орбиты Меркурия, красное смещение в спектрах звёзд, искривление лучей света вблизи Солнца, обусловленное кривизной, пространства. Согласие теории с опытом достаточно хорошее, но чистота экспериментов нарушается различными сложными побочными влияниями. Однако влияние искривления пространства-времени можно обнаружить даже в умеренных гравитационных полях. Очень чувствительные часы, например, могут обнаружить замедление времени на поверхности Земли. Чтобы расширить экспериментальную базу ОТО, во второй половине XX в. были поставлены новые эксперименты: проверялась эквивалентность инертной и гравитационной масс (в том числе и путем лазерной локации Луны); с помощью радиолокации уточнялось движение перигелия Меркурия; измерялось гравитационное отклонение радиоволн Солнцем, проводилась радиолокация планет Солнечной системы; оценивалось влияние гравитационного поля Солнца на радиосвязь с космическими кораблями, которые отправлялись к дальним планетам Солнечной системы, и т.д. Все они, так или иначе, подтвердили предсказания, полученные на основе ОТО.

1.4 Современное состояние теории гравитации и её роль в физике

В физике XX в. ОТО сыграла особую и своеобразную роль.

Во-первых, она представляет собой новую теорию тяготения хотя, возможно, и не вполне завершена и не лишена некоторых недостатков. Трудность состоит в том, что гравитация — это вид энергии поэтому она сама является собственным источником энергии; гравитация как физическое поле сама обладает (как, например и электромагнетизм) энергией и импульсом, а значит, и массой. следовательно, уравнения теории нелинейны, т.е. нельзя просто сложить известные решения для простых систем, чтобы получилось полное решение для сложной системы. С этим связаны, например, трудности в интерпретации содержания тензора энергии — импульса. Математический аппарат теории настолько сложен, что почти все задачи кроме самых простейших, оказываются неразрешимыми. Из-за та ких трудностей (возможно, они скорее технического характера, но может быть и принципиального) ученые до сих пор — спустя 80 лет после того, как ОТО была сформулирована, — все еще пытаются разобраться в ее смысле.

Во - вторых, на основе ОТО были развиты два фундаментальных

направления современной физики: геометризированные единые теории поля; релятивистская космология.

Успешная геометризация гравитации заставила многих физиков задуматься над вопросом о сущности физики в ее отношении с геометрией. Здесь сложились две противоположные точки зрения:

I) поля и частицы непосредственно не определяют характер пространственно-временного континуума. Он сам служит лишь ареной проявления. Поля и частицы чужды геометрии мира и их надо добавить к геометрии, чтобы вообще можно было говорить о какой либо физике;

2) в мире нет ничего, кроме пустого искривленного пространства. Материя, заряд, электромагнетизм и другие поля являются лишь проявлением искривленного пространства. Физика есть геометрия.

ОТО оказалась переходной теорией между первым и вторым подходами. В ОТО представлен смешанный тип описания реальности: гравитация в ней геометризирована, а частицы и поля, отличные от гравитации, добавляются к геометрии.

Многие ученые (в том числе и сам Эйнштейн) предпринимали попытки объединить электромагнитное и гравитационное поля в рамках достаточно общего геометрического формализма на базе ОТО. С открытием разнообразных элементарных частиц и соответствующих им полей естественно встала проблема включения и их в рамки подобной единой теории. Это положило начало длительному процессу поисков геометризированной единой теории поля, которая, по замыслу, должна реализовать второй подход — сведение физики к геометрии, создание геометродинамики.

Анализ показывает, что там, где проявляются изменения топологической структуры мира, топологии пространственно-временного континуума, там фиксируется кажущееся изменение фундаментальных законов природы. Так, происходит кажущееся нарушение причинности, когда при падении в «черную дыру» исчезают элементарные частицы. Поэтому изучение пространства и поиск единой теории поля имеет глобальное значение.

2.1 Возникновение и развитие квантовой физики

Истоки квантовой физики можно найти в исследованиях процессов излучения тел. Еще в 1809 г. П. Прево сделал вывод, что каждое тело излучает независимо от окружающей среды. Развитие спектроскопии в XIX в. привело к тому, что при изучении спектров излучения начинают обращать внимание и на спектры поглощения. При выясняется, что между излучением и поглощением тела существует простая связь: в спектрах поглощения отсутствуют или ослабляются те участки спектра, которые испускаются данным телом. Этот закон получил объяснение только в квантовой теории.

Г. Кирхгоф в 1860 г. сформулировал новый закон, который гласит что для излучения одной и той же длины волны при одной и той же температуре отношение испускательной и поглощательной способностей для всех тел одинаково. Другими словами, если EλT и AλT – соответственно испускательная и поглощательная способности тела, зависящие от длины волны λ и температуры T, то

где φ(λ,T) – некоторая универсальная функция λ и T, одинаковая для всех тел.

Кирхгоф ввел понятие абсолютно черного тела как тела, поглощающего все падающие на него лучи. При определении вида универсальной функции естественно было предположить, что можно воспользоваться теоретическими соображениями, прежде всего основными законами термодинамики. Л. Больцман показал, что полная энергия излучения абсолютно черного тела пропорциональна четвертой степени его температуры, однако задача конкретного определения вида функции Кирхгофа оказалась весьма трудной, и исследования в этом направлении, основанные на термодинамике и оптике, не привели к успеху. Опыт давал картину, не объяснимую с точки зрения классических представлений: при термодинамическом равновесии между колеблю­щимися атомами вещества и электромагнитным излучением почти энергия сосредоточена в колеблющихся атомах и лишь ничтожная часть ее приходится на долю излучения, тогда как согласно классической теории практически вся энергия должна была бы перейти к электромагнитному полю.

Перейти на страницу:  1  2  3  4  5  6  7  8  9  10  11