Рефераты по Физике

Роль многократной ионизации в действии излучения

Страница 1

Введение. Шестнадцать лет назад Платцман блестяще рас­смотрел вопрос о возможной роли многократной ионизации в действии излучения. К сожалению, к проблеме изучения действи­тельной роли, которую играет переданная энергия, вызывающая образование многократно заряженных ионов, приступить очень трудно и она остается довольно неясной.

Механизмы ионизации. Существуют различные процессы, кото­рые могут привести к образованию многократно заряженных ионов. В этом обзоре мы не будем обсуждать такие процессы, как одновременный электронный захват и ионизацию «тяжелыми» положительными частицами (см., например, [2], а также следую­щую статью Кистемейкера), ионизацию при мезонном захвате [3] и т. д. Блестящий анализ ионизации, связанной с различными процессами ядерного распада, был недавно опубликован Вексле-ром [4].

Мы обсудим здесь кратко многократную ионизацию, обуслов­ленную смежными ионизациями, и многократное испускание сла­бо связанных электронов по существу в «одном акте». Основная часть настоящей статьи будет посвящена многократной ионизации, связанной с первоначальной ионизацией внутренних оболочек.

Смежные ионизации. Гипотеза, согласно которой определен­ный тип эффектов облучения может обусловливаться смежными ионизациями, не нова. Напомним модель Ли — Кэтчесайда (пред­ставляющую интерес хотя бы с исторической точки зрения [5]), согласно которой каждая ионизирующая частица, которая пере­секает хроматиду в традесканции, может с большой вероятностью разрушить ее только в том случае, если в пределах диаметра хро-матиды эта частица производит 15—20 актов ионизации. Анало­гично в ранних попытках объяснить радиационные повреждения сухих белков, исходя из предположения о «прямом действии», допускалось, что для инактивации одной молекулы иногда необ­ходимо, чтобы при прохождении одной частицы наступало нес­колько ионизации [6]. Па основании этих рассуждений, а также анализа более общей модели Ховарда-Фландерса [7], были выпол­нены расчеты вероятности того, что в пределах данного расстоя­ния образуется некоторое число ионов, причем допускались ста­тистические флуктуации как чдсдз ионных скорлений, так и числа ионов в каждом из них [8]. Эти расчеты, основанные на данных об ионизации газа, следует, однако, пересмотреть, чтобы учесть прогресс наших знаний о характеристических потерях энергии электронами в конденсированных средах [9]. Согласно гипотезе Хатчинсона, на одну первичную ионизацию требуется меньшая энергия, чем обычно считалось [10], т. е. для инактивации фермен­тов, облучаемых в сухом состоянии в отсутствие кислорода (но не в его присутствии), требуется, как правило, многократная иони­зация. Наконец, механизм инактивации, предложенный Плат-цманом и Франком и заключающийся в разрыве вторичных связей волной поляризации, предполагает необходимость не­большого числа ионизации в самой молекуле белка или вблизи нее [11].

По-видимому, вопрос о пространственных корреляциях возник­ших зарядов относится к важным. Количественные характеристи­ки ионных скоплений еще не установлены. Кроме того, не суще­ствует резкого экспериментального различия между «смежными ионизациями» и состоянием, возникающим при различных видах многократной ионизации, обсуждаемых ниже.

«Одноактное» испускание внешних электронов. Для физиков-экспериментаторов и теоретиков объяснение «одноактного» испус­кания двух или большего числа слабо связанных атомных или молекулярных электронов под действием, скажем, удара электро­на до сих пор представляется очень сложным.

К счастью, возможные детали механизма многократного ис­пускания слабо связанных электронов для наших целей имеют лишь второстепенный интерес. К сожалению, эмпирические дан­ные о вероятности (сечении) тг-кратной ионизации (п ]> 2) до сих пор чрезвычайно скудны [12, 13]. Однако основная масса «вторичных» электронов, создаваемых высокоэнергетическим из­лучением, имеет энергию, при которой сечение даже наиболее вероятной двукратной ионизации мало. Поэтому при обычных условиях облучения значение полного выхода такой двукратной ионизации в 103 раз меньше значения выхода для однократных ионизации [1]. Кроме того, химическая активность этих двукрат­но ионизированных атомов не должна быть особенно большой. Аналогичной ионизацией более высокой кратности можно полно­стью пренебречь. Что же касается первичных ионизации, то в не­которых атомарных газах около 10% всех ионизации, создавае­мых электронами средней энергии, могут оказаться двукратными и около 1% —трехкратными [12, 13].

Внутриоболочечная ионизация. Общие соображения. Особен­ный интерес представляет механизм многократной ионизации с потерей электронов внутренними, глубоколежащими оболоч­ками, за которой следует — вероятно, через 10~14 — 10~15 сек — эмиссия других электронов с последующей перестройкой атомного или молекулярного электронного облака. Этот механизм пред­полагает выделение болыноц порции энергии, способной вызвать

сильные локальные нарушения и затем быстро преобразовать­ся в потенциальную энергию молекулы. Даже в кислороде— легком атомо — по крайней мере 530 эв остается в ионе при ис­пускании одного K-электрона, что более чем в 10 раз превышает энергию, необходимую для удаления двух валентных электронов.

Сечения однократной внутриоболочечной ионизации можно довольно точно вычислить из теории. Число первичных дву­кратных или многократных внутриоболочечных ионизации очень мало. (Даже если эти ионизации маловероятны, они сыграли известную роль в интерпретации Kα-сателлитов в рентгеновском спектре [14].) Теоретический выход внутриоболочечной иониза­ции в реальных условиях облучения был получен Дурупом и Платцмашш [15, 10] путем расчета сечений с использованием теории Спенсера и Фано [17]. Наконец, процессы, вызываемые образованием внутриоболочечных вакансий, интенсивно изуча­лись как физиками, так и химиками, занимающимися ядерной химией [4, 18].

Процессы, непосредственно следующие за образованием внут­риоболочечных вакансий.

Изолированные атомы. В тяжелом атоме, электро­ны которого располагаются на многочисленных оболочках и подоболочках (энергетических уровнях), перестройка может проис­ходить громадным числом способов, в том числе путем как радиа­ционных, так и нсрадиационных переходов, причем последние могут вызывать значительную потерю электронов. Образование внутриоболочечной вакансии в атоме Хе (Z — 54) иногда сопро­вождается ливнем, состоящим из более чем 20 электронов [19], а наиболее вероятное их число равно 8 [19, 201 (см. также [13]). Этот процесс представляет собой каскад простых переходов Оже, в'каждом из которых один электрон переходит на внутреннюю орбиту, а энергия перехода идет на выбивание другого электрона.

Перейти на страницу:  1  2  3  4  5