Рефераты по Физике

Введение в теплоэнергетику Дальнего Востока

Страница 5

Энергосистемы Дальнего Востока.

В настоящий момент Дальневосточная энергосистема представляет собой сеть предприятий, связанных под общей управляющей компанией ОАО «Дальэнерго».

Тепловые станции и тепловые электроцентрали (по очередности запуска):

· Владивостокская ТЭЦ-1;

· Артемовская ТЭЦ;

· Партизанская ГРЭС;

· Владивостокская ТЭЦ-2;

· Приморская ГРЭС;

Подстанции (110 КВт и свыше):

· Находкинская ЭПС;

· Преображенская ЭПС;

· Надеждинская ЭПС (стр.);

· Дальневосточная ЭПС;

· Спасская ЭПС;

· Чугуевская ЭПС;

· Лесозаводская ЭПС и др.

§ 2. Схема преобразования энергии на ТЭС.

Технологически любая ТЭС оформляется в виде определенной схемы движения и преобразования энергии. Так, подавая на вход этой схемы некоторое топливо Х, можно различными путями получать на выходе электроэнергию. В зависимости от того, какое топливо применяется на электростанции, разрабатывается принципиальная схема работы этой станции. На данный момент существует пять основных цепей преобразования энергии, реализованных на практике. Они показаны ниже:

Схема I – основная для стационарных установок. Это наиболее общая схема построения типовых тепловых электростанций.

Схема II – транспортабельная энергетическая установка, работающая за счет расширения продуктов сгорания. Иначе это принципиальная схема двигателя внутреннего сгорания, изобретенного Отто в 1876 году (за что получил медаль), который работал на газе. ДВС также работают на бензине, дизельном топливе.

Другим видом ТЭУ являются движители – устройства для перемещения аппаратов в сплошной среде (воде, воздухе и т.д.). К движителям относятся реактивные двигатели (внешнего сгорания). Устройство реактивного двигателя представляет собой бак, куда подается топливо, зажигательное устройство (как правило, это свеча), сопловой элемент, который выходит своими концами непосредственно в сплошную среду. За счет расширения продуктов сгорания внутри бака происходит их выход наружу через сопловой аппарат. Благодаря свойствам сопла, скорость и давление выходящего газа (жидкости или иного продукта сгорания) увеличиваются, за счет чего происходит толкательный момент движителя при соприкосновении с упругой средой. В результате, при правильном подборе конструкции двигателя, можно развивать скорости, приближенные к скоростям звука. Ракетные двигатели, являясь частными случаями реактивного двигателя, также делятся на одноконтурные и многоконтурные, реактивные и турбореактивные, прямые и реверсивные, которые служат для разных целей при полете.

Для того чтобы на стационарных ТЭС развивать номинальные мощности в короткое время, используют газотурбинные установки (ГТУ). Эти установки представляют собой турбины, которые работают не за счет энергии пара, а за счет расширения продуктов сгорания газа. Таким образом, используя ГТУ некоторое время после остановки основной паровой турбины до ее полного разгона, можно восполнять потери электроэнергии в энергосистеме, не лишая ее потребителей.

Схема III – безмашинное преобразование энергии топлива в электричество. Если плазму направить в магнитогидродинамический канал, то она, проходя через силовые линии магнитного поля, преобразуется в механическую энергию, а на концах полюсов магнитов образуется постоянный ток. Проблема таких установок встает в том, как получить высокотемпературную плазму, подобрать правильное устройство гидромагнитного канала и материалы для транспортировки плазмы. Однако существовали такие установки совместного США с Россией производства, которые по причине «холодной войны» между этими двумя государствами исчезли в неизвестном направлении.

Схема IV – получение электроэнергии путем конвертации ее из тепловой посредством электрохимических реакций материалов.

В 1821 году Зеебек получил прямое преобразование тепловой энергии в электрическую в термоэлектрическом генераторе.

А, В – разнородные проводники

ТГ – энергия тепла

Токр – температура окружающей среды

Эффект Зеебека более ста лет используется для измерения температур в термопарах.

~1880 году – Эдисон открыл явление термоэмиссии электронов; эффект назван в его честь. Суть термоэмисии состоит в том, что при нагревании одной из двух параллельных пластин из разного материала, между которыми имеется воздушная прослойка, происходит отдача электронов от нагретой пластины той, что имеет температуру окружающей среды. Эффект Эдисона применялся в полупроводниковых лампах до 1947 года – когда появились транзисторы.

Чуть позднее, в 1895 году, Герц выявляет фотоэффект у светочувствительных пластин разнородных материалов. При попадании солнца на поверхность этих материалов происходит процесс эмиссии электронов, который усиливается, если напротив пластины поместить принимающую сетку, которая притягивает электроны и является анодом данного энергетического элемента.

Схема V – прямое преобразование химической энергии в электрическую (без горения). Основой этой системы является электролитический материал. Взаимодействуя с анодом посредством химической реакции, последний сильно ионизируется, в результате чего на нем оседают электроны электролита, и возникает ЭДС. На данный момент такой способ получения энергии считается самым надежным, но одновременно и самым дорогим. Однако ведутся исследования на предмет создания специальных недорогих ионизирующих аппаратов, которые для специально подобранных материалов увеличивают силу и скорость отдачи электронов, а, следовательно, и мощность энергетической установки. Также изучается процесс восстановления проработанных материалов реакций в специальных вакуумных антиокислителях[*].

Перейти на страницу:  1  2  3  4  5  6  7