Рефераты по Физике

Тепловые двигатели и их применение

Страница 6

Тяга турбореактивных двигателей с высотой и скоростью полета уменьшается, экономичность увеличивается. Для облегчения взлета самолета с таким двигателем иногда используют двигатели-ускорители. Также тяга турбореактивного двигателя может быть увеличена путем дополнительного сгорания топлива в форсажной камере, расположенной между турбиной и реактивным соплом.

Однако такие двигатели не всегда выгодны экономически. В этом случае для огромных транспортных самолетов лучше использовать турбовинтовые двигатели (ТВД). Последние снабжены винтом (или винтами) на валу двигателя впереди компрессора. Для этого нужно удлинить вал, соединяющий турбину с компрессором, добавить редуктор, который снизит частоту вращения винта (иначе воздушный поток станет срываться с лопастей и пропеллер в основном будет вращаться вхолостую). Сила тяги складывается из тяги, возникающей как сила реакции при истечении газов из сопла, и из тяги винта (винтов), вращаемого специальной газовой турбиной или той же, которая вращает компрессор. При малой скорости полета основная доля тяги получается от работы винтов, на большой скорости – за счет силы реакции.

Ракетные двигатели. В отличие от ВРД все компоненты рабочего тела ракетного двигателя (РД) находятся на борту аппарата, оснащенного им.

РД в большинстве случаев используются на высокоскоростных летательных аппаратах. Ракетный двигатель обладает многими примечательными особенностями, но главная из них заключается в следующем. Ракете для движения не нужны ни земля, ни вода, ни воздух, так как она движется в результате взаимодействия с газами, образующимися при сгорании топлива. Поэтому ракета может двигаться в безвоздушном пространстве.

РД подразделяются на двигатели, работающие на жидком топливе (горючее и окислитель), - жидкостные ракетные двигатели (ЖРД), на двигатели, работающие на твердом топливе, - пороховые реактивные двигатели (ПРД), разновидностью которых являются твердотопливные ракетные двигатели (РДТТ), и на двигатели, работающие на гибридном ракетном топливе (ГРД).

В стадии исследования, разработки и частичного применения находятся ракетные двигатели:

· ядерные (собственно ядерные, термоядерные, радиоизотопные). Тяга двигателей создается за счет энергии, выделяющейся в результате реакции деления ядер тяжелых элементов (собственно ядерный), реакции управляемого синтеза ядер легких элементов (термоядерный) или в результате радиоактивного распада изотопов (радиоизотопный);

· электрические (электромагнитные или плазменные, электростатические, электротермические). Для создания тяги с помощью рабочего тела используется электрическая энергия бортовой энергоустановки летательного аппарата;

· газоаккумуляторные (сублимационные и др.). Тяга двигателя создается истечением газов или других продуктов через реактивное сопло за счет потенциальной энергии самих продуктов, принудительно созданной до полета летательного аппарата;

· фотонные. Тяга двигателя создается направленным истечением квантов электромагнитного излучения – фотонов. Фотонный двигатель имеет предельно возможный удельный импульс, так как скорость истечения фотонов равна скорости света;

· комбинированные.

По назначению и характеру использования в ракетно-космической технике ракетные двигатели подразделяются на основные (маршевые, стартовые) и вспомогательные (рулевые, корректирующие, микроракетные, тормозные и др.).

Жидкостные ракетные двигатели применяются на ракетах-носителях космических летательных аппаратов и космических аппаратах в качестве маршевых, тормозных и управляющих двигателей, а также на управляемых баллистических ракетах. ЖРД как основной самолетный двигатель почти не применяется из-за большого расхода топлива.

ЖРД состоит из одной или нескольких камер сгорания с индивидуальным или общим реактивными соплами, системы подачи компонентов ракетного топлива, органов регулирования и вспомогательных агрегатов.

ЖРД подразделяются:

· по типу используемого ракетного топлива – однокомпонентные, двухкомпонентные (горючее и окислитель) и многокомпонентные;

· по системе подачи топлива – вытеснительные (путем наддува баков, в которых содержится топливо, воздухом, газообразным азотом или продуктами сгорания самих компонентов топлива) и турбонасосные (в составе газовой турбины и топливных насосов на общем валу);

· по схеме использования топлива – с дожиганием и без дожигания генераторного газа.

В качестве жидкого ракетного топлива используются:

· в качестве горючего – легковоспламеняющиеся и, как правило, токсичные вещества углеводородного состава (спирты, типа керосин, жидкий водород) и азотоводородного состава (амины, гидразин, несимметричный диметилгидразин (так называемый, гептил), аммиак и др.);

· в качестве окислителя – высокоагрессивные и токсичные вещества (жидкий кислород, четырехокись азота и др.).

Твердотопливные ракетные двигатели используются в баллистических, зенитных, противотанковых и других ракетах военного назначения, а также на ракетах-носителях и космических летательных аппаратах. Небольшие твердотопливные двигатели применяются также в качестве ускорителей при взлете самолетов.

РДТТ состоит из корпуса (камеры сгорания), в котором размещен весь запас ракетного топлива в виде заряда, реактивного сопла, воспламенительного устройства, а также может содержать устройство для регулирования тяги по величине и направлению и устройство «отсечки» тяги (выключения двигателя).

Твердое ракетное топливо содержит окислитель и горючее в твердой фазе. По сравнению с жидким ракетным топливом имеет преимущества: возможность длительного хранения ракеты в снаряженном состоянии и высокую плотность. Основные недостатки: трудность управления процессом сгорания и относительно невысокая теплота сгорания.

Термомагнитные двигатели и

тепловые двигатели с внешним подводом теплоты

По данным Агентства экономических новостей, наиболее перспективными разработками в настоящее время являются термомагнитный двигатель и тепловой двигатель с внешним подводом теплоты.

Перейти на страницу:  1  2  3  4  5  6  7