Рефераты по Физике

Приборы с акустическим переносом заряда

Страница 6

Эта пересъемка осуществляется на различных редукционных камерах, которые обеспечивают уменьшение первичного изображения в 5—60 раз. Съемки выполняются на высококачественных фотопластинках.

Наряду с вариантом технологического цикла изготовлений промежуточного шаблона, включающем вычерчивание первичного оригинала и пересъем его на редукционной камере, существует и другой вариант, использующий процесс фотонабора. Практически операция фотонабора сводится к формированию изображения непосредственно в размерах промежуточного фотошаблона. Все изображение при этом разбивается на элементарные прямоугольники с различными раз­мерами и ориентацией.

В фотонаборной установке (генераторе изображения) имеется наборная диафрагма, расположенная в предметной плоскости объектива. Световой поток от лампы вспышки через конденсорную систему линз падает на наборную щелевую диафрагму. Ширина, длина и угол поворота щели диафрагмы изменяются с помощью трех управляющих элек­тродвигателей, которые приводят в движение две подвижные пластины диафрагмы. Световой поток, прошедший диафраг­му, фокусируется высокоразрешающим объективом на фото­пластинку, расположенную на координатном столе. Коорди­натный стол с помощью двух серводвигателей перемещается по осям X и У. Таким образом, световое пятно, соответству­ющее выбранной диафрагме, проектируется с уменьше­нием в нужное место на фотопластине. Известные фотона­борные установки хорошо стыкуются с ЭВМ, что позволяет значительно упростить технологический цикл изготовления шаблона.

В дальнейшем изготовляют рабочий фотошаблон. Метод последовательного уменьшения предполагает 2—3 этапа уменьшения первичного оригинала в процессе пересъема. Второй этап может быть совмещен с мультишцированием изображения. При этом уже при пересъеме получают окон­чательный (рабочий) фотошаблон.

Этот метод получения рабочего шаблона применяется при невысоких требованиях к изображению: минимальный раз­мер элемента — 5—7 мкм, точность положения элемента — 2—5 мкм. Прецизионные же «высокочастотные» фотошаб­лоны проходят еще один обязательный этап уменьшения, осуществляемый с помощью вторичного пересъема. Устрой­ства, осуществляющие вторичную пересъемку, получили на­звание фотоповторителей или мультипликаторов. Для акустоэлектронных устройств это означает размещение на фото­шаблоне различных изображений, соответствующих преобра­зователям, суммирующим шинам, отражательным структу­рам и другим элементам. Для реализации требуемой струк­туры на звукопроводе создается либо комплект рабочих шаб­лонов, либо один сложный шаблон, содержащий полное изо­бражение всей структуры. Шаблоны комплекта снабжаются метками для последующего совмещения.

Независимо от выбранного метода последующей фотоли­тографии на поверхность звукопровода должно быть нане­сено проводящее покрытие. Металлизация рабочей поверх ности звукопровода производится чаще всего вакуумным спо­собом. К металлической пленке на рабочей поверхности зву­копровода предъявляются следующие требования: малая толщина (<0,1—0,5 мкм), равномерность слоя, высокая электрическая проводимость, минимум микродефектов (ца­рапин, непокрытых участков) и т.д. Наиболее распространен­ными материалами, используемыми для металлизации рабо­чей поверхности звукопровода, являются алюминий, золото и медь. Встречно-штыревые преобразователи, изготовленные из алюминия с подслоем ванадия, успешно работают на звукопроводах из кварца и ниобата лития. Медное или зо­лотое покрытие с подслоем хрома хорошо сочетается с германатом висмута. Пленки металла могут быть получены несколькими путями:

а) испарением металла с нагретой проволоки или тигля;

б) испарением металла с тигля, разогретого электронным лучом;

в) высокочастотным распылением.

При выборе технологии осаждения учитывают толщину требуемой пленки, допустимую степень нагрева подложки,, расход материала, направленность потока материала при распылении. Последний фактор весьма существенен при полу­чении проводящей структуры осаждением металла через окна в защитном рельефе фоторезиста.

Сама фотолитография — процесс, в результате которого образуется рельеф заданной формы в металлических плен­ках или диэлектрических материалах. В основе этого про­цесса лежит свойство некоторых высокомолекулярных сое­динений формировать под действием света устойчивый к травителям рельеф. Различают негативный и позитивный фоторезист. При негативном процессе в результате прояв­ления удавляются незасвеченные участки, а при позитивном-засвеченные. Оставшийся после проявления фоторезист слу­жит для получения изображения либо на покрывающей под­ложку проводящей пленке, либо непосредственно на поверх­ности звукопровода. Процесс фотолитографии содержит сле­дующие операции:

— нанесение слоя фоторезиста на подложку;

— экспонирование фоторезиста;

— проявление изображения на фоторезисте;

— получение изображения элементов акустоэлектронного устройства на поверхности звукопровода.

Нанесение фоторезиста на подложку выполняется раз­личными методами: пульверизацией, «центрифугированием», вытягиванием. Так как подложка акустоэлектронных уст­ройств характеризуется существенным неравенством сторон, то наиболее часто используется нанесение фоторезиста ме­тодом погружения подложки в фоторезист и вытягивания ее с определенной скоростью,,

Рабочий шаблон непосредственно экспонируется на по­верхность звукопровода, покрытого фоточувствительным сло­ем. При проекционной печати чаще всего для переноса изо­бражения применяется оптическая система с определенным уменьшением. Контактная печать осуществляется экспони­рованием изображения от находящегося в непосредственном контакте со звукопроводом рабочего фотошаблона. Принци­пиальной разницы между двумя методами практически нет однако, следует заметить, что проекционная печать может осуществляться одновременно с многократным уменьшени­ем изображения. В контактной печати такой возможности нет, поэтому требования к фотошаблону значительно выше.

Перейти на страницу:  1  2  3  4  5  6  7  8