Рефераты по Физике

Оптические квантовые генераторы

Страница 3

Иногда в качестве отражающих покрытий используются сереб­ряные пленки, но они позволяют получать коэффициент отражения не выше 95-96% и в отличие от интерференционных диэлектрических покрытий имеют большое поглощение, а потому часто выгорают в процессе работы. Одно из зеркал резонатора делается полупрозрачным для вывода энергии. Коэффициент пропускания выход­ного зеркала выбирается так, чтобы вывести из ОКГ максимальную энергию. При малом коэффициенте пропускания будет выводиться лишь незначительная доля энергии из резонатора. В случае боль­шого пропускания ухудшаются условия возбуждения колебаний. При некотором пропускании выходного зеркала генерация срывается, так как не выполняются пороговые условия. Оптимальный коэффи­циент пропускания, при котором выводится максимальная энергия генерации, зависят от качества кристалла, его длины, энергии накачки. Оптимальное пропускание выходного зеркала для боль­шинства твердотельных ОКГ составляет 20-60%.

Рабочее тело выполняют в форме стержня с хорошо обрабо­танными торцевыми поверхностями, имеющими плоскопараллельную или сферическую форму. Точность отклонения обработки торцевых поверхностей от заданной формы лежит в пределах десятых долей длины волны. Параллельность плоских торцов выдерживается с точ­ностью до нескольких угловых минут.

Иногда вместо внешних зеркал используются отражающие по­крытия, нанесенные непосредственно на торцы рабочего тела. Бо­ковая поверхность рабочих стержней частично или полностью де­лается матовой, чтобы предотвратить возбуждение типов колеба­ний, распространяющихся с отражением от боковых поверхностей.

Инверсия населенностей в рабочем теле создается методом оптической накачки. Как отмечено выше, пороговая мощность на­качки имеет величину до сотен ватт на кубический сантиметр ра­бочего вещества ОКГ. Столь высокая плотность мощности накачки приводит к сильному нагреванию рабочих тел ОКГ. Это вызывает трудности, часто непреодолимые, в реализации непрерывно­го режима накачки твердотельных ОКГ. Поэтому ОКГ на твердом теле, как правило, работают в режиме одиночных или периодиче­ски повторяющихся импульсов. Источником накачки служат газо­разрядные лампы. Наиболее часто используются импульсные ксено-новые лампы, обладающие наилучшей эффективностью преобразова­ния электрической энергии в световое излучение, спектральный состав которого соответствует линиям поглощения используемых активных сред.

Лампы конструктивно выполняются в виде прямой или свитой в спираль трубки с введенными на концах электродами. Для ини­циации разряда в лампах предусматривается специальный внутрен­ний или внешний поджигающий электрод. Лампы и рабочий стержень размещают внутри отражателя, обеспечивающего эффективность пе­редачи световой энергии накачки в активную среду. При исполь­зовании спиральных ламп рабочее тело помещается внутри них, а отражатель, выполняемый в виде кругового цилиндра, охватывает лампу.

Более эффективны системы с прямыми лампами и отражателями в виде эллиптического цилиндра (рис.72, б), обеспечивающего фокусировку излучения ламп на рабочий образец. Для этого рабо­чее тело и лампы размещаются вдоль фокусных осей цилиндра.(Рис. 72,в иллюстрирует систему, в которой содержатся несколько ламп и одно рабочее тело.) Столь же эффективной оказывается более простая система, в которой лампа и активное тело находятся ря­дом внутри узкого отражателя с круглым или овальным сечением. Отражатель выполняется из серебряной или алюминиевой фольги. В конструкциях систем накачки очень часто предусматриваются ох­лаждение рабочего тела и ламп путем обдува их воздухом ахи об­текания хладоагентом.

Питание ламп осуществляется от батареи конденсаторов Со (см.рис.72,а ), заряжаемых часто от сети переменного напряже­ния через повышающий трансформатор Тр. и выпрямительный эле­мент Д. . Нормальное напряжение заряда конденсаторов должно быть меньше напряжения самопробоя импульсной лампы накачки. За­жигание разряда в лампе осуществляется подачей на поджигапщий электрод высоковольтного инициирующего импульса от управляющей схемы. На рис.72,а последняя состоит из конденсатора С , за­ряжаемого от сети через диод Д2, тиратрона с холодным катодом и импульсного трансформатора Тр1. При замыкании кнопки К ти­ратрон зажигается, конденсатор с разряжается через первичную обмотку трансформатора и на вторичной обмотке появляется высо­ковольтный импульс.

Рубиновые ОКГ

Были первыми практически осу­ществленными оптическими квантовыми генераторами. В настоящее время ОКГ на рубине - наиболее распространенные и широко ис­пользуемые в практике. Это объясняется следующими достоинства­ми рубиновых ОКГ: излучение происходит в удобном спектральном диапазоне (в видимой области), обеспечивается большая Энергия генерации, рубиновые кристаллы легко получить высокого качест­ва, они имеют высокую прочность и не требуют охлаждения Рубив представляет собой кристалл корунда Аl203,в котором часть ио­нов Al3+ замещена трехвалентными ионами хрома Сг3- Активными частицами, определяющими генерацию, являются ионы хрома. В ОКГ используют кристаллы розового рубина о массовой концентрацией Сr2О3 относительно Al2O3 , примерно равной 0,05 массы что составляет 1,6*1019 ионов хрома в I см3.

На рис.73 приведена система нижних энергетических уровней ионов хрома. Она существенно отличается от системы уровней сво­бодных ионов, что связано со взаимодействием ионов с сильными

полями кристаллической решетки. Обозначения уровней, приведен­ные на рис.73, заимствованы из теории групп, которая использу­ется при расчете, и не связаны непосредственно с принятыми обо­значениями уровней свободных ионов. Рабочим является переход 2Е->4А2. Состояние 2Е является метастабильным. При комнатной температуре его время жизни составляет около 3 мс. Уровень 2E в действительности состоит из двух подуровней Е и 2А , раз­деленных промежутком 29 см-1. Переходы с этих подуровней в основное состояние 4А2 соответствуют линиям излучения света R1 и R2 с длиной волны 694,3 и 692,9 нм при температуре 300°С.

Перейти на страницу:  1  2  3  4  5  6  7  8  9  10  11