Рефераты по Физике

Компенсационный метод измерения

Страница 1

Оглавление

1.Компенсационныйметод

2.Применение компенсаторов постоянного тока

3.Схема для измерения напряжения и э. д. с

4.Схема для измерения тока

5.Схема для измерения сопротивлений

6.Схема для измерения мощности и поверки ваттметров http://maxi-tex.ru предлагаем заказать толстовки оптом.

7. Компенсаторы переменного тока

КОМПЕНСАЦИОННЫЙ МЕТОД ИЗМЕРЕНИЯ

Компенсационный метод (метод противопос­тавления) измерения заключается в уравновешивании, осуществляе­мом включением на индикатор равновесия либо двух электрически

Рис. 7.2, Схема компенсации на­пряжений

не связанных между собой, но противоположно направленных напряжений или ЭДС, либо двух раздельно регулируемых токов. Компенсационный метод исполь­зуют для непосредственного срав­нения напряжений или ЭДС, тока и косвенно для измерения других электрических, а также неэлектри­ческих величин, преобразуемых в электрические.

Применяют следующие схемы компенсации: а) напряжений или ЭДС (рис. 7.2); б) электрических токов (рис. 7.3).

Рис. 7.3. Схема компенсации токов

Схема, показанная на рис. 7.2, наиболее распространенная. В ней измеряемое напряжение Ux компенсируется равным, но про­тивоположным по знаку известным напряжением UK. Падение на­пряжения UK создается током / на изменяемом по значению ком­пенсирующем образцовом сопротивлении RK. Изменение Rк про­исходит до тех пор, пока UK не будет равно Ux. Момент компен­сации определяют по отсутствию тока в цепи магнитоэлектриче­ского гальванометра G; при этом мощность от объекта измерения не потребляется.

Компенсационный метод обеспечивает высокую точность изме­рения.

Компенсаторами или потенциометрами называют устройства, предназначенные для измерения методом компенсации напряжения или э.д.с., а также ряда других электрических величин, связанных с напряжением или э.д.с. с функциональной зависимостью (например, I, P, R, и др.).

В практических схемах компенсаторов для обеспечения необходи­мой точности измерения ток I в рабочей цепи определяют не ампер­метром непосредственной оценки, а компенсационным методом с помощью эталона ЭДС нормального элемента. Нормальные эле­менты обеспечивают постоянную во времени ЭДС, равную 1,01865 В при температуре 20 °С, внутреннее сопротивление 500—1000 Ом, ток перегрузки 1 мкА. С изменением температуры окружающей среды значение ЭДС уменьшается на каждый градус повышения температуры:

Et = E20 - 0,00004 (t - 20) - 0,000001 (t ~ 20)2, (7.3)

где E t — ЭДС при температуре t, °С; E20 — ЭДС при 20 °С.

Схема компенсатора представлена на рис. 7.4. Она содержит источник вспомогательной ЭДС Eвсп для питания рабочей цепи, в которую включают регулировочное Rp, компенсирующее RK и образцовое RH сопротивления. К зажимам НЭ подключают нор­мальный элемент, ЭДС которого Eнэ, к зажимам X — искомую ЭДС Ех. В качестве индикатора равновесия используют высоко­чувствительный магнитоэлектрический гальванометр G.

При работе с Компенсатором выполняют две операции:

1) устанавливают ток / в рабочей цепи компенсатора с помощью источника вспомогательной ЭДС Eвсп (положение 1 переключа­теля В);

2) измеряют искомую ЭДС Ех (положение 2 переключателя В).

Для установки рабочего тока предварительно определяют темпе­ратуру окружающей среды, затем по (7.3) вычисляют точ­ное значение ЭДС нормаль­ного элемента для данной температуры. Далее устанав­ливают образцовое сопротив­ление RH, значение которого выбирают в зависимости от значений тока в рабочей це­пи и ЭДС при температуре t (сопротивление RK состоит из катушки с постоянным значе­нием сопротивления и после­довательно соединенной с ней температурной декадой). За­тем переключатель В ставят в положение 1 и ЭДС

Рис. 7.4. Схема компенсатора

нормального элемента противопоставляют падению напряжения на Ru, которое регулируется с помощью изменяющего значение тока / в рабочей цепи резистором Rp. Момент компенсации соответствует нулевому отклонению гальванометра G, т. е. Eнэ = IRn.

После установления рабочего тока I для измерения Ех переключатель В ставят в положение 2 и регулировкой образцового компенсирующего сопротивления Rк вновь доводят до нуля ток в цепи гальванометра G. Тогда

(7.4)

где I — значение тока, установленное при положении 1 переклю­чателя В;RK— значение образцового компенсирующего сопро­тивления, при котором имеет место состояние равновесия.

Сопротивление RK выполняют по специальным схемам, кото­рые обеспечивают постоянное сопротивление между точками 3, 4 и переменное сопротивление между точками 3, Д, а также необхо­димое число знаков и точность отсчета.

Указанным условиям удовлетворяют схемы с замещающими (рис. 7.5) и шунтирующими декадами (рис. 7.6). В схеме с замещаю­щими декадами все секции верхних декад полностью дублированы соответствующими секциями нижних декад. Переключатели двух одинаковых декад связаны механически. При перемещении пере­ключателей общее сопротивление остается неизменным: если умень­шаются значения сопротивлений верхних декад, то увеличиваются значения сопротивлений нижних декад, и наоборот. Компенсирую­щее напряжение можно снимать с верхних или нижних декад. Каждая последующая декада имеет сопротивление секции в десять раз меньше предыдущей. Р схеме с шунтирующими декадами при каждом положении двойных переключателей одна секция верхней декады шунтируется девятою секциями нижней декады, при этом

Рис. 7.5, Схема с замещающими декадами

общее сопротивление между точками 3 и 4 (см. рис. 7.4) остается неизменным. Ток через ceкции сопротивлений нижней декады Г в десять раз меньше тока ' через секции сопротивлений верхней декады, т. е.

Перейти на страницу:  1  2  3  4  5