Рефераты по Физике

Ядерная энергетика

Страница 3

Поиск урана, и, главное, определение его запасов как очень ценного и важного стратегического сырья проводится во многих странах мира. В капиталистических странах первые три места по запасам и содержанию урана в рудах занимают Канада, ЮАР и США. По добыче первое место занимают США, второе Канада, третье ЮАР. В природе есть один-единственный изотоп урана, который может под­держивать цепную реакцию деления ядра урана — это уран-235. В одном акте деления ядра урана выделяется энергия на один атом в 200 млн. раз большая, чем при любой химической реакции. Если бы все изотопы в 1 г урана подверглись делению, то выделилась бы энергия в 20 млн. ккал, что соответствует 23 тыс. кВт-ч тепловой энергии. Однако в природном Уране очень трудно получить самоподдерживающуюся цепную реакцию деления, так как делящийся изотоп уран-235 в нем содержится в незна­чительном количестве—всего 0, 71%, а остальные 99, 29% составляет не­делящийся изотоп уран-238. Поэтому создаются специальные устройства — ядерные котлы, реакторы, в которых при определенных контролируемых условиях происходит самоподдерживающаяся цепная реакция деления ядер тяжелых элементов. Такие реакторы, имеющие в своем составе ядер­ное топливо (горючее), специальные виды замедлителя нейтронов, отра­жатель и охладитель, позволяют из неделящихся изотопов урана-238 или тория-232 получать делящиеся изотопы урана-233 и новый вид ядерного топлива — плутоний-239, которые затем могут быть использованы в ка­честве ядерного горючего.

Именно в образовании новых дополнительных количеств делящихся изотопов (а не только в израсходовании загруженного в реактор топлива) заключается исключительная ценность и специфическая особенность ядер­ного горючего. Кроме обычного воспроизводства, возможно так называе­мое расширенное, при котором образующегося ядерного горючего полу­чается больше, чем его потребляется (отношение числа получающихся атомов делящегося вещества к числу потребленных называется коэффи­циентом воспроизводства). С помощью процесса воспроизводства ядер­ного горючего (за счет неделящихся изотопов урана или тория) можно во многораз увеличить мировые запасы ядерного горючего, что и пыта­ются осуществить введением в эксплуатацию реакторов на быстрых нейтронах.

Чтобы в системе, в данном случае в ядерном реакторе, содержащей делящиеся изотопы, например уран-235, могла поддерживаться цепная реакция, необходимо выполнение ряда условий. Во-первых, масса деля­щегося вещества должна быть не меньше критической, т. е. система должна содержать уран-235 в количестве, достаточном для того, чтобы в среднем один нейтрон из числа получающихся при каждом акте деления ядра смог бы вызвать следующий акт деления, прежде чем он покинет систему. Во-вторых, система, содержащая ядерное топливо, должна быть окружена материалом, который как бы улавливает выходящие из нее нейтроны и возвращает их обратно, т. е. отражает. Вообще в природе не существует материала, отражающего нейтроны непосредственно в обратном направ­лении. Механизм работы отражателя состоит в том, что попадающие в него нейтроны беспорядочно движутся по искривленным траекториям и, не испытывая захвата со стороны атомов отражателя, в конце концов частич­но (в идеальном случае до 50%) попадают обратно в активную зону. Третье условие — это снижение вредного захвата нейтронов в неделящих­ся материалах системы, которые непосредственно не участвуют в цепной реакции, но их ядерные характеристики таковы, что требуют оптималь­ного решения в выборе соответствующих материалов с точки зрения сохра­нения нейтронов.

И,наконец, одним из важнейших условий осуществления полностью контролируемой цепной реакции деления ядер атомов служит наличие средств управления ею, т. е. регулирования ее хода и скорости про­хождения.

Природа размножения нейтронов и короткое время их жизни (немно­гим больше 10 мин) обусловливают практически мгновенное изменение скорости реакции даже при ничтожном изменении одного из параметров. Проблема регулирования процесса, происходящего в ядерном реакторе, сводится к оперативному управлению ходом физической реакции, к мерам по поддержанию реактора возможно дольше в рабочем состоянии и к ме­рам аварийной защиты реакторной системы. При этом необходимо под­держивать реактивность реактора на заданном уровне. Если число воз­никающих нейтронов превышает число поглощаемых, то мощность реак­тора растет, т. е. реактивность положительна. Если число возникающих нейтронов меньше числа поглощаемых, мощность реактора падает, т. е. ре­активность отрицательна. Если число возникающих и поглощающих нейт­ронов одинаково, реактивность реактора равна нулю, т. е. реактор работа­ет в стационарном установившемся режиме и его мощность неизменна. "Особое значение в энергетических реакторах имеет теплоноситель как средство охлаждения реактора и переноса тепла из его активной зоны, которое в конечном итоге превращается в генерируемую реакторной систе­мой энергию.

С теплоносителем связаны особые проблемы, поскольку это единствен­ный элемент в реакторе, который постоянно присутствует в движении как внутри активной зоны реактора, так и вне его. Контактируя с актив­ной зоной, теплоноситель сам становится радиоактивным, поэтому боль­шинство систем энергетических реакторов имеет два или даже три замкну­тых циркуляционных контура. Например, при двухконтурной тепловой схеме первичный теплоноситель забирает тепло от реактора и через паро­генератор передает его вторичному теплоносителю, будучи связанным с жидкостью второго контура не прямо, а только через так называемое трубное пространство. Таким образом радиоактивная жидкость первого контура полностью изолируется от второго, передающего тепло (пар не­обходимых параметров) турбинам. Исключение составляют реакторные системы с замкнутым контуром, у которых первичный теплоноситель (газ или водяной пар) непосредственно приводит в действие турбины

Для защиты от нейтронов, гамма-излучений и высокой температуры в системе используются специальные материалы, такие, как сталь (в том числе нержавеющая), свинец, обычный бетон или бетон с содержанием окислов железа (тяжелый) и т. д. , которыми окружают реактор. Интен­сивность гамма-излучения ядерного реактора настолько высока, что ох­лаждение «защиты», поглощающей это излучение, вызывает серьезные затруднения. Расположенные ближе к центру реактора защитные средства для отвода тепла часто снабжаются каналами, по которым протекает теплоноситель. Во внешней части защиты часто применяют тепловой экран. Последний слой защиты предусматривает снижение уровня излуче­ния до величины, не приносящей вреда здоровью человека, — это так на­зываемая биологическая защита

Перейти на страницу:  1  2  3  4