Рефераты по Физике

Элементарная теория радуги

Страница 4

Верхняя кривая S — это результирующая сложения вкладов капель всех размеров. Она характеризует распределение интенсивности света в оконча­тельной радуге, которую мы видим.

137 138 139 140 141 142 143 144

Угловое расстояние от Солнца

137 138 139 140 141 142 143 144

Угловое расстояние от Солнца

Рис. 3. Распределение интенсивности света в основной радуге и дополни­тельных дугах в зависимости от размера капель.

а — без учёта сплющивания капель; б — с учетом сплющивания капель. S — суммарная кривая.

На рис.3 б показаны те же кривые, но теперь учтено влияние сплю­щивания капель, тем более сильное, чем крупнее капли. Индивидуальные кривые для крупных сплющенных капель смещены в сторону больших минимальных углов отклонения от Солнца (или, что то же, в сторону уменьшения радиусов радуг), и в результате вся волнообразная поверхность оказалась изогнутой вправо (индивидуальные максимумы ушли вправо). Это привело к тому, что на результирующей суммарной кривой появи­лись, помимо основной радуги, еще дополнительные дуги, на угловых рас­стояниях от Солнца: первая —140,5°, вторая —141,3°, третья — 142,4°, чет­вертая—142,5°.

Дополнительные дуги видны только вблизи вершины основной радуги, так как они образованы только вертикальными или близкими к ним лучами, прошедшими через эллиптические сечения капель.

Расчетами показано, но это можно проследить и по рис.3 б, что допол­нительные, дуги создаются в основном каплями размером от 0,2 до 0,3 мм. Более крупные и более мелкие капли дают максимумы, накладывающиеся друг на друга и слишком далеко отстоящие от основной радуги (они уходят вправо). Радуги капель диаметром 0,2—0,3 мм находятся в преимущест­венном положении, поскольку их максимумы никуда не сместились. Таким образом, можно сделать вывод, что дополнительные дуги видны, если в лив­невом дожде присутствуют в значительном, количестве капли радиусом 0,25 мм и мало более крупных капель, смазывающих картину. Поэтому дополнительные дуги чаще видны и наиболее красочны не в очень интенсив­ных летних ливневых дождях. Они появляются также на фоне завесы из мельчайших капель, образующихся при разбрызгивании воды в поливальных установках.

Можно ли видеть целый круг радуги? С поверхности Земли мы можем наблюдать радугу в лучшем случае в виде половины круга, когда Солнце находится на горизонте. При поднятии Солнца радуга уходит под горизонт. Первую радугу можно, видеть при высотах Солнца более 42°, а вторую — более 50°. С самолета, а еще лучше с вертолета (больше обзор) можно наблюдать радугу в виде целого круга! Описание такой круговой радуги (ее и радугой, т. е. дугой, уже неудобно называть!) было помещено в жур­нале „Природа". Ее видели пассажиры самолета, летевшего в районе Новосибирска на высоте 1000 м.

Поляризация света радуг. Свет радуги характеризуется необычийно высокой степенью поляризации. В первой радуге она достигает 90%, во второй—около 80%. В этом легко убедиться, если посмотреть на радугу через поляризационную призму Николя. При небольших углах поворота призмы радуга полностью пропадает.

Радуга без дождя?

Бываютли радуги без дождя или без полос падения дождя? Оказывается, бывают — в лаборатории. Искусственные радуги создавались в результате преломления света в одной подвешенной капельке дистиллированной воды, воды с сиропом или прозрачного масла. Размеры капель варьировали от 1,5 до 4,5 мм. Тяжелые капли вытягивались под действием силы тяжести, и их сечение в вертикальной плоскости представляло собою эллипс. При освещении капельки лучом гелий-неонового лазера (с длиной волны 0,6328 мкм) появлялись не только первая и вторая радуги, но и необычайно яркие третья и четвертая, с центром вокруг источника света (в данном случае лазера). Иногда удавалось получать даже пятую и шестую радуги. Эти радуги, как первая и вторая, снопа были в стороне, противоположной источнику.

Итак, одна капелька создала столько радуг! Правда, эти радуги небыли радужными. Все они были одноцветными, красными, так как образо­ваны не белым источником света, а монохроматическим красным лучом.

Туманная радуга

В природе встречаются белые радуги, о которых говорилось выше. Они появляются при освещении солнечными лучами слабого тумана, состоя­щего из капелек радиусом 0,025 мм или менее. Их называют туманными радугами. Кроме основной радуги в виде блестящей белой дуги с едва заметным желтоватым краем наблюдаются иногда окрашенные дополни­тельные дуги: очень слабая голубая или зеленая дуга, а затем белесовато-красная.

Аналогичного вида белую радугу можно увидеть, когда луч прожектора, расположенного сзади вас, освещает интенсивную дымку или слабый туман перед вами. Даже уличный фонарь может создать, хотя и очень слабую, белую радугу, видимую на темном фоне ночного неба.

Лунные радуги

Аналогично солнечным могут возникнуть и лунные радуги. Они более слабые и появляются при полной Луне. Лунные радуги явление более редкое, чем солнечные. Для их возникновения необходимо сочетание двух условий: полная Луна, не закрытая облаками, и выпадение ливневого дождя или полос его падения (не достигающих Земли). Ливневые дожди, обусловленные дневными конвективными движениями воздуха, значительно реже выпадают ночью.

Лунные радуги могут наблюдаться в любом месте земного шара, где осуществятся перечисленные два условия.

Дневные, солнечные радуги, даже образованные самими мелкими кап­лями дождя или тумана, довольно белесые, светлые, и все же наружный край их хотя бы слабо, но окрашен в оранжевый или желтый цвет. Радуги, образованные лунными лучами, совсем не оправдывают своего названия, так как они не радужные и выглядят как светлые, совершенно белые дуги.

Отсутствие красного цвета у лунных радуг даже при крупных каплях ливневого дождя объясняется низким уровнем освещения ночью, при ко­тором полностью теряется чувствительность глаза к лучам красного цвета. Остальные цветные лучи радуги также теряют в значительной степени свой цветовой тон из-за ахроматичности (неокрашенности) ночного зрения человека.

Перейти на страницу:  1  2  3  4  5