Рефераты по Физике

Электронно-дырочный переход

Страница 2

Из условий динамического равновесия процессов диффузии и дрейфа носителей заряда в p-n-переходе следует, что разность минимальных энергий электронов проводимости в p- и n-областях p-n-структуры Wcn – Wcp должна быть равна , так же как и разность энергий дырок, поэтому можно записать: Самая подробная информация ремонт систем отопления в частном доме у нас на сайте.

Концентрация электронов в зоне проводимости n-области выше, чем в p-области, так как минимальная их энергия здесь ниже (на величину ), чем в зоне проводимости p-области. Аналогично, концентрация дырок в валентной зоне p-области выше, чем в валентной зоне n-области.

Непосредственно в области перехода энергетические уровни, как в зоне проводимости, так и в валентной зоне расположены наклонно, что свидетельствует о наличии градиента потенциала, а, следовательно, и электрического поля, которое выталкивает подвижные носители заряда из перехода. По этой причине концентрация электронов и дырок в переходе очень низка.

Полупроводниковый диод.

Устройство диода.

Полупроводниковым диодом называется двух электродный прибор, основу которого составляет p-n-структура, состоящая из областей p-типа и n-типа, разделенных электронно-дырочным переходом (рис.). Одна из областей p-n-структуры, называемая эмиттером, имеет большую концентрацию основных носителей заряда *, чем другая область, называемая базой.

База эмиттер с помощью электродов (Э), образующих омические переходы, соединяются с выводами (В), посредством которых диод включается в электрическую цепь.

Основным структурным элементом полупроводникого диода, определяющим его функциональные свойства, является p-n-переход – тонкий промежуточный слой между p- и n-областями.

Статические вольтамперные характеристики диода.

Статическая вольтамперная характеристика полупроводникового диода показана на рис. Здесь же пунктиром нанесена теоретическая вольтамперная характеристика электронно-дырочного перехода. Для наглядности обратная ветвь характеристики изображена в более крупном масштабе по току и в более мелком – по напряжению по сравнению с прямой ветвью.

В области малых токов реальная и теоретическая характеристики совпадают. Но при больших прямых токах, а также при высоких обратных напряжениях характеристики расходятся, что является следствием ряда причин, не учтенных при теоретическом анализе процессов в электронно-дырочном переходе.

В области больших прямых токов вследствие значительного падения напряжения на распределенном сопротивлении базы диода и сопротивлении электродов напряжение на электронно-дырочном переходе будет меньше напряжения U, приложенного к диоду, в результате чего реальная характеристика оказывается расположенной ниже теоретической и почти линейной.

Уравнение вольтамперной характеристики в этой области можно записать в виде:

,

где rб – электрическое сопротивление базы, электродов и вывода в диоде.

При повышении обратного напряжения обратный ток диода не остается постоянным, а медленно увеличивается. Одной из причин роста обратного тока диода является термическая генерация носителей зарядов в переходе. Составляющую обратного тока через переход, которая зависит от числа генерируемых в переходе в единицу времени носителей заряда, условимся называть термотоком перехода IT. С повышением обратного напряжения вследствие расширения перехода увеличивается его объем, поэтому число генерируемых в переходе носителей заряда и термоток перехода возрастают.

Другой причиной роста обратного тока диода является поверхностная проводимость электронно-дырочного перехода, обусловленные молекулярными и ионными пленками различного происхождения, покрывающими выходящую наружу поверхность перехода.

Из-за нестабильности физико-химической структуры этой поверхности, подверженной влиянию окружающей среды, ток утечки по поверхности Iу нестабилен, что приводит к «ползучести» характеристик диода. В современных диода поверхность перехода специально обрабатывают и защищают от внешних воздействий, поэтому ток утечки всегда существенно меньше термотока.

Таким образом, полный и обратный ток диода:

.

Пробой диода

Когда обратное напряжение диода достигает определенного критического значения, ток диода начинает резко возрастать. Это явление называют пробоем диода. Заметим, что пробой сопровождается выходом диода из строя лишь в том случае, когда возникает чрезмерный разогрев перехода, и происходят необратимые изменения его структуры. Если же мощность, выделяющаяся в диоде, поддерживается на допустимом уровне, он сохраняет работоспособность и после пробоя. Более того, для некоторых типов диодов пробой является основным рабочим режимом.

Напряжение, при котором наступает пробой перехода, зависти от типа диода и может иметь величину от единиц до сотен вольт.

Различают два основных вида пробоя электронно-дырочного перехода: электрический и тепловой. В обоих случаях резкий рост тока связан с увеличением числа носителей заряда в переходе. При электрическом пробое число носителей заряда в переходе возрастает под действием сильного электрического поля и ударной ионизации атомов решетки, при тепловом пробое – за счет термической ионизации атомов.

Электрический пробой.

Обычно длина свободного пробег электрона в полупроводнике значительно меньше толщины электронно-дырочного перехода. Если за время свободного пробега электроны успевают набрать достаточную энергию, то возникает ударная ионизация атомов электронами. В результате ударной ионизации наступает лавинное размножение носителей заряда.

Перейти на страницу:  1  2  3  4  5