Рефераты по Физике

Фундаментальные взаимодействия элементарных частиц

Страница 3

Конечно, численные значения lPl и tPl очень малы по сравнению с характерными значениями величин в макромире. Но это означает только то, что квантовогравитационные эффекты слабо проявляют себя. Они могли быть существенны лишь тогда, когда характерные параметры стали бы сравнимыми с планковскими величинами.

Отличительной чертой явлений микромира является то обстоятельство, что физические величины оказываются подверженными так называемым квантовым флуктуациям. Это означает, что при многократных измерениях физической величины в определенном состоянии принципиально должны получаться различные численные значения, обусловленные неконтролируемым взаимодействием прибора с наблюдаемым объектом. Вспомним, что гравитация связана с проявлением кривизны пространства-времени, то есть с геометрией пространства-времени. Поэтому следует ожидать, что на временах порядка tPl и расстояниях порядка lPl геометрия пространства-времени должна стать квантовым объектом, геометрические характеристики должны испытывать квантовые флуктуации. Другими словами, на планковских масштабах нет никакой фиксированной пространственно-временной геометрии, образно говоря, пространство-время представляет собой бурлящую пену.

Последовательная квантовая теория гравитации не построена. В силу чрезвычайно малых значений lPl , tPl следует ожидать, что в любом обозримом будущем не удастся поставить эксперименты, в которых проявили бы себя квантовогравитационные эффекты. Поэтому теоретическое исследование вопросов квантовой гравитации остается единственной возможностью продвижения вперед. Есть ли, однако, явления, где квантовая гравитация могла бы оказаться существенной? Да, есть, и мы о них уже говорили. Это гравитационный коллапс и Большой Взрыв. Согласно классической теории гравитации, объект, подверженный гравитационному коллапсу, должен сжиматься до сколь угодно малых размеров. Это означает, что его размеры могут стать сравнимыми с lPl , где классическая теория уже неприменима. Точно так же в процессе Большого Взрыва возраст Вселенной был сравним с tPl и она имела размеры порядка lPl. Это означает, что понимание физики Большого Взрыва невозможно в рамках классической теории. Таким образом, описание конечной стадии гравитационного коллапса и начальной стадии эволюции Вселенной может быть осуществлено только с привлечением квантовой теории гравитации.

СИЛЬНОЕ ВЗАИМОДЕЙСТВИЕ.

Адроны и кварки.

Адроны, в отличие от лептонов, можно назвать элемен­тарными частицами только с известными оговорками. Любой из многочисленных адронов действительно элемен­тарен в том смысле, что его нельзя разбить на составные части. И вместе с тем твердо установлено, что адроны имеют внутреннюю структуру: они состоят из кварков. Кварки, подобно лептонам, на современном уровне знания выглядят как бесструктурные, истинно элементарные ча­стицы. Иногда поэтому лептоны и кварки называют, в отличие от адронов, фундаментальными частицами.

Парадоксальные свойства кварков не имеют прецедента в богатой парадоксами истории физики. Экспериментаторы, используя пучки энергичных частиц, уверенно видят их внутри адронов, измерили их спин, массы и электрические заряды. И вместе с тем никому не удалось, а если правильны современные теоретические представления, то и не удастся в будущем выбить кварк из адрона. Кварки в адронах нахо­дятся в пожизненном заключении. Это пленение называют английским словом «конфайнмент». Теоретические пред­ставления о механизме конфайнмента мы обсудим через некоторое время. А пока ближе познакомимся с различными сортами кварков.

Удобно начать обсуждение свойств кварков с нереляти­вистской кварковой модели, имеющей дело с так называ­емыми конституентными, или блоковыми, кварками, и которых, как из блоков, построены адроны. Конституентный кварк представляет собой сложный объект, имеющий тот же электрический заряд и тот же спин, что и одноимен­ный «голый» кварк, входящий в лагранжиан (такие лаг-ранжевы кварки называют обычно токовыми). Сложная структура блокового кварка возникает на базе токового кварка за счет облака виртуальных частиц, образованного сильным взаимодействием. В результате масса блокового кварка примерно на 300 МэВ превышает массу токового кварка. В дальнейшем, говоря о массе кварков, мы будем иметь в виду именно массы токовых кварков.

Протоны и нейтроны состоят из самых легких кварков и (от английского up) и d (от down). Их спин, так же как и всех других кварков, равен V2- Заряд -кварка равен +2/3. заряд d-кварка равен —1/3. Масса u-кварка равна примерно 5 МэВ, а масса d-кварка 7 МэВ. Протон состоит из двух u-кварков и одного d-кварка: p=uud. Нейтрон состоит из двух d-кварков и одного u-кварка: n=ddu.

Согласно нерелятивистской кварковой модели орбиталь­ные угловые моменты кварков в нуклонах равны нулю. Суммарный спин двух u-кварков в протоне равен единице. Эта единица, геометрически складываясь со спином d-квар-ка, дает спин протона, равный 1/2. Аналогично, с заменой , устроен нейтрон.

Из тех же кварков, как из кубиков, может быть построе­на целая серия других адронов. Так, например, если спины трех кварков параллельны, то они образуют квартет -барионов со спином 3/2:

Подчеркнем, что, согласно нерелятивистской кварко­вой модели, орбитальный угловой момент кварков равен нулю не только в нуклонах, но и в-барионах. Последнее утверждение очевид­ным образом противоречит принципу Паули: действительно, два и даже три кварка одного типа находятся в одном и том же квантовом состоянии. В дальнейшем мы увидим, однако, что принцип Паули здесь не нарушается, по­скольку кварки одного типа отличаются друг от друга значениями квантового числа. Это квантовое число — цвет.

Перейти на страницу:  1  2  3  4  5  6  7  8  9  10  11