Рефераты по Физике

Физико-химические методы исследования строительных материалов

Страница 7

Применение в строительных металлических конструкциях коррозионностойких сталей Коорозионная стойкость стали зависит от ее химического состава. Давно известно, что сталь, содержащая медь, лучше противостоит коррозии в атмосферных условиях, чем сталь без меди. Небольшая добавка в сталь меди, фосфора и хрома еще больше повышает ее коррозионную стойкость в атмосферных условиях. Повышение коррозионной стойкости таких марок стали в атмосферных условиях связано с природой пленок продуктов коррозии, образующихся в первый период на поверхности металла. На Плакате № 1 приведены данные коррозии углеродистой стали, медистой стали и стали с небольшими добавками фосфора, меди, хрома и никеля. Из приведенных данных следует, что сталь с фосфором интенсивно корродирует только в первые 1,5-2 года, а далее образующиеся на поверхности стали продукты коррозии практически полностью затормаживают дальнейшее развитие процесса коррозии. Такая сталь может применяться в атмосферных условиях без защитных покрытий. Низколегированные стали уже находят широкое применение за рубежом - в США, Японии, ФРГ. Применение противокоррозионных защитных покрытий Для защиты оборудования и строительных конструкций от коррозии в отечественной и зарубежной противокоррозионной технике применяется большой ассортимент различных химически стойких материалов - листовые и пленочные полимерные материалы, бипластмассы, стеклопластики, углеграфитовые, керамические и другие неметаллические химически стойкие материалы. В настоящее время расширяеется применение полимерных материалов, благодаря их ценным физико-химическим показателям, меньшему удельному весу и др. Большой интерес для применения в противокоррозионной технике представляет новый химически стойкий материал - шлакоситалл. Значительные запасы и дешевизна исходного сырья - металлургических шлаков - обусловливают экономическую эффективность производства и применения шлакоситалла. Шлакоситалл по физико-механическим показателям и химической стойкости не уступает основным кислотоупорным материалам (керамике, каменному литью), широко применяемым в противокоррозионной техники. Среди многочисленных полимерных материалов, применяемых за рубежом в противокоррозионной технике, значительное место занимают конструкционные пластмассы, а также стеклопластики, получаемые на основе различных синтетических смол и стекловолокнистых наполнителей. В настоящее время химическая промышленность выпускает значительный ассортимент материалов, обладающих высокой стойкостью к действию различных агрессивных сред. Особое место среди этих материалов занимает полиэтилен. Он инертен во многих кислотах, щелочах и растворителях, теплостоек до температуры + 70 С и т.д. Однако большим недостатком данного материала, затрудняющего его широкое применение в противокоррозионной технике, является неполярный характер поверхности полиэтилена. Другими направлениями использования полиэтилена в качестве химически стойкого материала являются порошкообразное напыление и дублирование полиэтилена стеклотканью. Широкое применениее полиэтиленовых покрытий объясняется тем, что они будучи одними из самых дешевых, образуют покрытия с хорошими защитными свойствами. Покрытия легко наносятся на поверхность различными способами, в том числе пневматическим и электростатическим распылением. Используя свойство термопластичнотси пленкообразователя, покрытия получают сплавлением частиц без применения растворителей. Широкое использование порошкообразных покрытий вызвано рядом технико-экономических соображений: доступностью исходного сырья, простотой нанесения, высоким качеством покрытий, огне- и взрывобезопасностью при производстве работ. Также в противокоррозионной технике особого внимания заслуживают монолитные полы на основе синтетических смол. Высокая механическая прочность, химическая стойкость, декоративный вид - все эти положительные качества делают монолитные полы чрезвычайно перспективными. Продукция лакокрасочной промышленности находит применение в различных отраслях промышленности и строительства в качестве химически стойких покрытий. Лакокрасочное пленочное покрытие, состоящее из последовательно наносимых на поверхность слоев грунтовки, эмали и лака, применяют для противокоррозионной защиты конструкций зданий и сооружений (ферм, ригелей, балок, колонн, стеновых панелей), а также наружных и внутренних поверхностей емкостного технологического оборудования, трубопроводов, газоходов, воздуховодов вентиляционных систем, которые в процессе эксплуатации не подвергаются механическим воздействиям абразивных (твердых) частиц, входящих в состав среды. Для повышения механической прочности лакокрасочного покрытия используют армирующие ткани (хлориновую или стеклянную) различных марок. Одним из новых направлений являются разработка и применение лакокрасочных материалов, не содержащих органических растворителей; разработка и применение порошковых лакокрасочных материалов; водоразбавляемых красок; цинконаполненных комбинированных лакокрасочных материалов и других. Для наненсения лакокрасочных материалов применяются в основном окраска изделий в электростатическом поле и окраска безвоздушным напылением. Возможна также комбинация этих двух способов, то есть окраска безвоздушным напылением в электростатическом поле. Данные способы окраски находят широкое применение в промышленности и в силу многих своих преимуществ - уменьшения потерь матеериалов, увеличения толщины покрытия, наносимого за один слой, уменьшения расхода растворителей, улучшение условий производства окрасочных работ и т.д. В последнее время большое внимание уделяется получению и применению комбинированных покрытий, поскольку в ряде случаев использование традиционных методов защиты является неэкономичным. В качестве комбинированных покрытий, как правило, используется цинковое покрытие с последующей окраской. При этом цинковое покрытие играет роль грунтовки. Перспективно применение резин на основе бутилкаучука, которые отличаются от резин на других основах повышенной химической стойкостью в кислотах и щелочах, включая концентрированную азотную и серную кислоты. Высокая химическая стойкость резин на основе бутилкаучука позволяет более широко применять их при защите химической аппаратуры, например в цветной металлургии при производстве цинка и меди такие аппараты как сгустители, баки для серной кислоты, баки для реагентов, баки для обработанного электролита и другого оборудования. Заключение. В результате проведенного анализа современного состояния отечественной и зарубежной практики противокоррозионных работ, можно сделать выводы о необходимости совершенствования основных направлений внедрения новых материалов и ресурсосберегающих технологий. Производство коррозионностойких сплавов (например, высоколегированной хромовой и хромоникелевой стали) само по себе уже является способом борьбы с коррозией, причем лучшим. Нержавеющие сталь и чугугн, так же как и коррозионностойкие сплавы цветных металлов, - весьма ценный конструкционный материал, однако применение таких сплавов не всегда возможно по причине их высокой стоимости или по технических соображениям. Можно отметить использование полимерных материалов, занимающих все большее место в противокоррозионной технике. Из них в первую очередь необходимо внедрять в производство конструкционные стеклопластики и бипластмассы. Перспективным является устройство монолитных покрытий полов на основе синтетических химически стойких смол - эпоксидных, полиэфирных и др. Для широкого внедрения химически стойких монолитных полов взамен штучных кислотоупорных материалов необходимо организовать промышленный выпуск химически стойких эпоксидных, полиэфирных и полиуретановых смол, а также отработать технологию их нанесения. С целью уменьшения потерь краски, увеличения толщины однослойного покрытия, уменьшения расхода растворителей и улучшения условий окраски целесообразно в широких масштабах применять прогрессивные способы окраски - безвоздушный и в электростатическом поле. Для повышения производительности труда необходимо разработать и наладить промышленный выпуск механизмов, приспособлений и наборов комплектов инструментов для проведения различных видов химзащитных работ.

Перейти на страницу:  1  2  3  4  5  6  7  8