Рефераты по Физике

Ультразвук и инфразвук

Страница 6

Применение ультразвука в хирургии.

Существуют две основные области применения ультразвука в хирургии. В первой из них используется способность сильно фокусированного пучка ультразвука вызывать локальные разрушения в тканях, а во второй механические колебания ультразвуковой частоты накладываются на хирургические инструменты типа лезвий, пил, механических наконечников.

Применение ультразвука в природе

Летучие мыши, использующие при ночном ориентировании эхолокацию, испускают при этом ртом (кожановые - Vеsperti+ lianidae) или имеющим форму параболического зеркала носовым отверстием (подковоносые - Rhinolophidae) сигналы чрезвычайно высокой интенсивности. На расстоянии 1 - 5 см от головы животного давление ультразвука достигает 60 мбар, т.е. соответствует в слышимой нами частотной области давлению звука, создаваемого отбойным молотком. Эхо своих сигналов летучие мыши способны воспринимать при давлении всего 0,001 мбар, т.е. в 10000 раз меньше, чем у испускаемых сигналов. При этом летучие мыши могут обходить при полете препятствия даже в том случае, когда на эхолокационные сигналы накладываются ультразвуковые помехи с давлением 20 мбар. Механизм этой высокой помехоустойчивости еще неизвестен. При локализации летучими мышами предметов, например, вертикально натянутых нитей с диаметром всего 0,005 - 0,008 мм на расстоянии 20см (половина размаха крыльев), решающую роль играют сдвиг во времени и разница в интенсивности между испускаемым и отраженным сигналами. Подковоносы могут ориентироваться и с помощью только одного уха (моноурально), что существенно облегчается крупными непрерывно движущимися ушными раковинами. Они способны компенсировать даже частотный сдвиг между испускаемыми и отраженными сигналами, обусловленный эффектом Доплера (при приближении к предмету эхо является более высокочастотным, чем посылаемый сигнал). Понижая во время полета эхолокационную частоту таким образом, чтобы частота отраженного ультразвука оставалась в области максимальной чувствительности их "слуховых" центров, они могут определить скорость собственного перемещения.

У ночных бабочек из семейства медведиц развился генератор ультразвуковых помех, "сбивающий со следа" летучих мышей, преследующих этих насекомых.

Не менее умелые навигаторы - жирные козодои, или гуахаро. Населяют они горные пещеры Латинской Америки - от Панамы на северо-западе до Перу на юге и Суринама на востоке. Самый большой подарок природы - это способность гуахаро к эхолокации. Живя в кромешной тьме, жирные козодои, тем не менее, приспособились виртуозно летать по пещерам. Они издают негромкие щелкающие звуки, свободно улавливаемые и человеческим ухом (их частота примерно 7 000 герц). Каждый щелчок длится одну-две миллисекунды. Звук щелчка отражается от стен подземелья, разных выступов и препятствий и воспринимается чуткой птицей.

Медузы и инфразвуки

На краю "колокола" у медузы расположены примитивные глаза и органы равновесия - слуховые колбочки величиной с булавочную головку. Это и есть "уши" медузы. Однако "слышат" они не просто звуковые колебания, доступные и нашему уху, а инфразвуки с частотой 8 – 13 герц.

Перед штормом усиливающийся ветер срывает гребни волн и захлестывает их. Каждое такое захлопывание воды на гребне волны порождает акустический удар, создаются инфразвуковые колебания, их-то и улавливает своим куполом медуза. Колокол медузы усиливает инфразвуковые колебания (как рупор) и передает на "слуховые колбочки". Шторм разыгрывается еще за сотни километров от берега, он придет в эти места примерно часов через 20, а медузы уже слышат его и уходят на глубину.

Нужно отдать должное бионикам, которые создали электронный автоматический аппарат - предсказатель бурь, работа которого основана на принципе "инфрауха" медузы. Такой прибор может предупредить о готовящейся буре за 15 часов, а не за два, как обычный морской барометр.

Перейти на страницу:  1  2  3  4  5  6