Рефераты по Физике

Ударные волны

Страница 7

Рис. 2. Диаграмма фазового равновесия железа.

После нагружения железа ударными волнами новых фаз в исследуемых образцах не обнаружено, следовательно фазовый переход является обратимым. В то же время в структуре деформированного монокристаллического железа после воздействия ударной волны с максимальным давлением на фронте р < 13ГПа обнаружены двойники деформации, а при 13ГПа < p < 23ГПа наряду с двойниками образуется ленточный рельеф, напоминающий мартенситную структуру. Дальнейшее увеличение фронтального давления не приводит к значительному изменению микроструктуры. Следовательно, обратимое превращение a®e®a приводит к образованию сильно измельченной и двойникованной структуры высокой твердости внутри оставшихся неизменными по размерам зерен. Превращение a®g®a сопровождается полной перекристаллизацией металла, близкой к явлению рекристаллизации, которая должна приводить к некоторому понижению твердости. Тем не менее, даже при грубозернистой структуре прочность и твердость железа становятся все же существенно выше исходной.

Анализ фазовых переходов основан либо на равновесном термодинамическом анализе при установившихся режимах распространения ударных волн, либо на кинетических моделях превращения во фронте волн сжатия и разгрузки. На границе области существования равновесной фазовой смеси с однофазной средой, характеризующейся изломом адиабаты Гюгонио (рис.3), термодинамические характеристики терпят разрыв. Ударное сжатие в фазе А ограничено точкой а на фазовой границе, где начинается фазовый переход. Фаза В имеет меньший удельный объем, поэтому дальнейшее сжатие продолжается вдоль линии ab, пока полиморфное превращение не завершится в точке b, а фаза В начнет сжиматься вдоль линии bc. Пусть линия Релея od, связывающая начальное состояние ударно сжимаемого твердого тела с конечным, пересекает адиабату Гюгонио. Тогда ударная волна, соответствующая этому состоянию, является неустойчивой и поэтому расщепляется на две(линии Релея oa и od), имеющие разные скорости распространения. Первая ударная волна сжимает материал до состояния а в начале перехода, а вторая, имеющая меньшую скорость, до состояния d в конце перехода. Превращение может происходить также через одну устойчивую ударную волну, если точка d лежит выше точки с в месте пересечения продолжения линии Релея оа с верхней ветвью адиабаты Гюгонио.

Рис.3. Адиабата Гюгонио для типичного фазового перехода, вызванного ударной волной( S – область существования фаз А и В; GА и GВ – границы существования фаз А и В).

Рассмотрим особенности структуры ударных волн на примере импульсного нагружения железа (стали). При повышении давления до величины p>pГ в металле кроме упругой волны, распространяющейся со скоростью аe, формируется первая пластическая волна. При достижении давления фазового перехода p=pФ материал из одного кристаллического состояния переходит в другое, что характеризуется изломом кривой Гюгонио. Далее при р>pФ в некотором интервале давлений Dр пластическая волна разделяется на две пластические волны с различной интенсивностью и разной скоростью распространения.

Вторая пластическая волна имеет меньшую скорость и отстает от первой, а профиль давления растягивается во времени по мере удаления от поверхности расщепления. При максимальном давлении на фронте ударной волны происходит слияние пластических волн.

Процесс разгрузки ударносжатого материала за фронтом ударной волны также приводит к расщеплению волны разгрузки на волну упругой и волну пластической разгрузки.

Адиабатическое расширение материала после ударного сжатия до давления p>pФ происходит следующим образом. В волне разрежения, образующейся при расширении, частицы в области высокого давления двигаются медленнее, чем частицы в области низкого давления, что приводит к формированию ударной волны разрежения. Ударная волна разряжение, связывающая различные состояния материала, уменьшает напряжения скачком, а ее максимальная интенсивность (для железа А~18ГПа) ограничена линией Релея, которая проведена из точки, соответствующей начальному состоянию, и касается верхней ветви адиабаты Гюгонио.

Ударное воздействие на сталь должно вызывать процессы как упрочняющие, так и разупрочняющие материал. Упрочнение может быть обусловлено дополнительным наклепом зерен и дроблением кристаллических блоков. Разупрочнение может вызываться влиянием нагрева, возникающего в ударносжатом материале, так как короткие времена делают процесс близким к адиабатическому. На нагрев материала в условиях адиабатического сжатия расходуется тепловая энергия процесса DUD.

Большой интерес для анализа структурных изменений металлов, подвергаемых ударным нагрузкам, представляет оценка остаточной температуры сразу после разгрузки. Остаточная температура металла весьма значительно зависит от давления на фронте ударной волны. Например, для железа она составляет 303 К при 13 ГПа, 423 К при 35 ГПа, 523 К при 50 ГПа и 673 К при 75ГПа. Следовательно, при давлениях, превышающих (30 .50) ГПа, нагрев металла во фронте ударной волны значителен и может оказывать заметное влияние на свойства и структуру металлов (в частности, у метастабильных сплавов остаточная температура может инициировать полиморфное превращение).

Процесс деформации твердого тела при нагружении ударными волнами имеет целый ряд особенностей. Расщепление пластической волны на две или слияние их в одну волну существенно изменяет характер процессов, происходящих в сжимаемом материале. В общем случае изменения, возникающие в структуре материала, зависят от формы и величины импульса, времени его действия, структуры ударного фронта, пути реализации нагрузки и разгрузки.

Анализ многочисленных результатов экспериментов позволяет классифицировать связи между величинами функциональных составляющих тензора напряжений и структурными изменениями материала:

- температура в зоне фронта ударной волны и остаточная температура зависят как от гидростатического давления, так и от сдвиговых напряжений, хотя механизмы нагрева различны;

Перейти на страницу:  1  2  3  4  5  6  7  8