Рефераты по Физике

Термоядерные реакции

Страница 5

Как неоднократно подчёркивалось выше, скорость термоядерных реакций чувствительным образом зависит от температуры. Это понятно – даже небольшие изменения температуры очень резко сказываются на концентрации необходимых для реакции сравнительно энергичных протонов, энергия которых раз в 20 превышает среднюю тепловую энергию. Для протон – протонной реакции приближенная формула для скорости энерговыделения, рассчитанного на грамм вещества, имеет вид

e = const*T эрг/г*c.

Эта формула справедлива для сравнительно узкого, важного интервала температур 11 – 16 миллионов кельвинов. Для более низких температур (от 6 до 10 миллионов кельвинов) справедлива другая формула:

e = const*T эрг/г*с.

Основным источником энергии Солнца, температура которого близка к 14 миллионам кельвинов, является протон – протонная реакция. Для более массивных, а следовательно, и более горячих звёзд существенна углеродно-азотная реакция, зависимость которой от температуры значительно более сильная. Например, для интервала температур 24-36 миллионов кельвинов

e = const*Z*T эрг/г*с;

где Z – относительная концентрация тяжёлых элементов: углерода и азота.

Как мы видим, e зависит не только от температуры, но и от относительной концентрации тяжёлых элементов. Ведь ядра этих элементов являются катализатором углеродно-азотной реакции.

Кроме протон-протонной и углеродно-азотной реакции, при некоторых условиях может иметь существенное значение и другие ядерные реакции. Так как заряд – «мишени», с которой сталкивается протон, невелик, кулоновское отталкивание не так значительно, как в случае столкновений с ядрами углерода и азота. Значит вероятность термоядерного взаимодействия выше, а значит и скорость этих реакций сравнительно велика. Уже при температуре около одного миллиона кельвинов они идут достаточно быстро. Однако, в отличие от ядер углерода и азота, ядра лёгких элементов не восстанавливаются в процессе дальнейших реакций, а необратимо расходуются. Именно поэтому обилие лёгких элементов на Солнце и звёздах ничтожно мало.

ГЛАВА III. СОЛНЕЧНАЯ ЭНЕРГИЯ

ТЕРМОЯДЕРНЫЕ РЕАКЦИИ НА БОЛЕЕ ТЯЖЁЛЫХ ЭЛЕМЕНТАХ

Мы рассмотрели реакции на сравнительно лёгких элементах, которые протекают соответственно при сравнительно низких температурах. Однако представим на минуту, что всё вокруг состоит из свободных протонов и электронов, а температура этих частиц достаточно велика. Астроном наверняка догадался бы, что это схоже с условиями после «Большого взрыва». Так вот, указанная выше протон-протонная цепочка, является первой цепочкой превращения протонов в целые ядра. И именно с помощью этих реакции получились первые ядра гелия. Далее температура Вселенной понижалась, и интенсивность ядерных превращений становилось меньше. А как же получилось всё то многообразие веществ в природе, спросите вы? Дело в том, что после «большого взрыва» происходили разные превращения, даже немыслимые, но то количество тяжёлых элементов, которое мы сейчас наблюдаем, не могло образоваться сразу. Дальнейшие реакции происходили уже внутри звёзд. Но при высоких энергиях. Уже при T = 100 миллионов градусов начинается важная реакция

С + He O + n,

Где буквой n обозначен протон. Её значение не столько в том, что при этом освобождается энергия, сколько в том, что появившийся протон может «прилипнуть» к любому другому ядру и тем самым увеличить его атомная масса – таким путём могут быть последовательно образованны все более тяжёлые элементы (-распад).

В стационарных звездах тяжелые элементы могут образовываться при последовательном присоединении ядер гелия:

C + He O + g; N+He F + g;

O+ He Ne + g; Ne +He Mg + g и т. д.

Ne и Mg образуются только в звёздах с массой, большей 30М .

Если в недрах звёзд достигается очень высокая температура, то там возможно выделение энергии и в реакциях между тяжелыми элементами.

ПЕРВЫЕ ОПЫТЫ ИСПОЛЬЗОВАНИЯ

СОЛНЕЧНОЙ ЭНЕРГИИ

В 1600 г. во Франции был создан первый солнечный двигатель, работавший на нагретом воздухе и использовавшийся для перекачки воды. В конце XVII в. ведущий французский химик А. Лавуазье создал первую солнечную печь, в которой достигалась температура в 1650 оС и нагревались образцы исследуемых материалов в вакууме и защитной атмосфере, а также были изучены свойства углерода и платины. В 1866 г. француз А. Мушо построил в Алжире несколько крупных солнечных концентраторов и использовал их для дистилляции воды и приводов насосов. На всемирной выставке в Париже в 1878 г. А. Мушо продемонстрировал солнечную печь для приготовления пищи, в которой 0,5 кг мяса можно было сварить за 20 минут. В 1833 г. в США Дж. Эриксон построил солнечный воздушный двигатель с параболоцилиндрическим концентратором размером 4,8* 3,3 м. Первый плоский коллектор солнечной энергии был построен французом Ш.А. Тельером. Он имел площадь 20 м 2 и использовался в тепловом двигателе, работавшем на аммиаке. В 1885г. Была предложена схема солнечной установки с плоским коллектором для подачи воды, причем он был смонтирован на крыше пристройки к дому.

Перейти на страницу:  1  2  3  4  5  6  7