Рефераты по Физике

Теплоэнергетические генераторы и радиоизотопные источники энергии

Страница 2

Элек­три­че­ский ток I=dq/dt, сле­до­ва­тель­но, энер­гия (за вре­мя t )

а те­п­ло­вая мощ­ность

Об­ра­ти­мость эф­фек­та Пель­тье со­сто­ит в том, что при пи­та­нии це­пи то­ком I от внеш­не­го ис­точ­ни­ка ха­рак­тер те­п­ло­во­го дей­ст­вия I на спай мож­но из­ме­нять ре­вер­си­ро­ва­ни­ем на­прав­ле­ния то­ка . На этом ос­но­ва­но соз­да­ние тер­мо­элек­три­че­ских на­гре­ва­те­лей и хо­ло­диль­ни­ков. По­след­ние име­ют боль­ше прак­ти­че­ское зна­че­ние.

Эф­фект Том­со­на (Кель­ви­на) . Эф­фект Том­со­на от­но­сит­ся к объ­ем­ным (ли­ней­ным) эф­фек­там в от­ли­чие от пло­ско­ст­но­го (то­чеч­но­го) эф­фек­та Пель­тье. при про­те­ка­нии то­ка I по тер­ми­че­ски не­од­но­род­но­му по­лу­про­вод­ни­ку (или про­вод­ни­ку) на его от­рез­ке (х1,х2) с пе­ре­па­дом Т1-Т20 в слу­чае сов­па­де­ния на­прав­ле­ний то­ка и гра­ди­ен­та

вы­де­ля­ет­ся те­п­ло Том­со­на Qт (на­грев от­рез­ка). При встреч­ных на­прав­ле­ни­ях I и Т те­п­ло Qт по­гло­ща­ет­ся (ох­ла­ж­де­ние от­рез­ка). Эф­фект объ­яс­ня­ет­ся из­ме­не­ни­ем энер­гии дви­жу­щих­ся элек­тро­нов при пе­ре­ме­ще­нии в об­ласть с иным тем­пе­ра­тур­ным уров­нем. При ре­вер­се на­прав­ле­ния I на­блю­да­ет­ся об­ра­ти­мость эф­фек­та Том­со­на, т.е. пе­ре­ме­на эк­зо- или эн­до­тер­ми­че­ско­го ха­рак­те­ра те­п­ло­во­го дей­ст­вия. Теп ло­вя энер­гия про­пор­цио­наль­на то­ку I и пе­ре­па­ду Т т.е. при­чем dT=|T|dx. Сле­до­ва­тель­но (для на р- и п-уча­ст­ках),

Здесь - сред­нее зна­че­ние ко­эф­фи­ци­ен­та Том­со­на для дан­но­го ма­те­риа­ла. В од­но­мер­ном слу­чае |T|=dT/dx. Те­п­ло­вая мощ­ность Ко­ли­че­ст­вен­ное зна­че­ние эф­фек­та Том­со­на вто­ро­сте­пен­но.

Эф­фект Зе­бе­ка. В це­пи двух раз­но­род­ных про­вод­ни­ков или по­лу­про­вод­ни­ков, спай и кон­цы ко­то­рых име­ют пе­ре­пад тем­пе­ра­тур, воз­ни­ка­ет эле­мен­тар­ная тер­мо-ЭДС dE=Z(T)dT или ЭДС

при­чем сред­нее зна­че­ние ко­эф­фи­ци­ен­та Зе­бе­ка

Эф­фект об­ра­тим: ес­ли со­от­но­ше­ние за­ме­нить на , то на­прав­ле­ние дей­ст­вия Е ме­ня­ет­ся, т.е. про­ис­хо­дит ре­верс по­ляр­но­сти ТЭЭ. Об­ра­ти­мость эф­фек­та Зе­бе­ка со­про­во­ж­да­ет­ся об­ра­ти­мо­стью эф­фек­та Пель­тье.

Прин­цип ра­бо­ты ТЭЭ. (рис. 1). Ки­не­ти­че­ская энер­гия элек­тро­нов на кон­це це­пи с вы­ше, чем на "хо­лод­ных" кон­цах с Т=Т2 , сле­до­ва­тель­но, пре­об­ла­да­ет диф­фу­зия элек­тро­нов от го­ря­че­го спая к хо­лод­ным кон­цам. кон­цен­тра­ция элек­тро­нов в р- и п-вет­вях раз­лич­на, по­это­му бо­лее от­ри­ца­тель­ный по­тен­ци­ал по­лу­ча­ет ко­нец тер­мо­стол­би­ка п-ти­па, по от­но­ше­ния к ко­то­ро­му ко­нец стол­би­ка р-ти­па име­ет по­ло­жи­тель­ный по­тен­ци­ал. Раз­ность по­тен­циа­лов Е=Z(T1-T2) обу­слав­ли­ва­ет ток I ( при за­мы­ка­нии це­пи на со­про­тив­ле­ние Rн на­груз­ки) и по­лез­ную элек­три­че­скую мощ­ность Ра­бо­те ТЭГ со­пут­ст­ву­ют об­ра­ти­мые эф­фек­ты.

1.3 Ба­та­реи тер­мо­элек­три­че­ских эле­мен­тов

Для по­лу­че­ния в ТЭГ ха­рак­тер­но­го на­пря­же­ния U30 В при ЭДС од­но­го ТЭЭ Е0,10,3 В тре­бу­ет­ся по­сле­до­ва­тель­но со­еди­нить в ба­та­рею при­мер­но N102 ТЭЭ. при за­дан­ных раз­ме­рах се­че­ния тер­мо­стол­би­ка и уров­нях то­ка I на­груз­ки не­об­хо­ди­мое чис­ло па­рал­лель­ных вет­вей в ба­та­рее оп­ре­де­ля­ет­ся плот­но­стью то­ка J=I/s10 A/см2. Для КЛА вы­пол­ня­ют­ся ба­та­реи ТЭГ мощ­но­стью от еди­ниц до со­тен ватт. В СССР для ста­цио­нар­ных и пе­ре­движ­ных АЭУ соз­да­ны РИ­ТЭГ се­рии "Бе­та" мощ­но­стью до 10 Вт на ра­дио­ак­тив­ном изо­то­пе це­рия 144Се. Пло­ские и ци­лин­д­ри­че­ские ва­ри­ан­ты ТЭГ оп­ре­де­ля­ют­ся их ком­по­нов­кой в бло­ке. Кас­кад­ное со­еди­не­ние ТЭГ по­зво­ля­ет по­вы­сить КПД пре­об­ра­зо­ва­ния энер­гии до 0,13. В це­лях умень­ше­ния удель­ной мас­сы ТЭГ раз­ра­бо­та­ны мно­го­слой­ные пле­ноч­ные ТЭЭ. пред­став­ля­ет ин­те­рес соз­да­ние в пер­спек­ти­ве ТЭГ в ви­де экс­пе­ри­мен­таль­ных ре­ак­то­ров-ге­не­ра­то­ров на ба­зе ин­те­граль­но­го ис­пол­не­ния ТЭЭ и те­п­ло­вы­де­ляю­щих эле­мен­тов (ТВЭЛ) из де­ля­щих­ся со­еди­не­ний ти­па суль­фи­дов ура­на или то­рия, ко­то­рые об­ла­да­ют по­лу­про­вод­ни­ко­вы­ми свой­ст­ва­ми.

2. Радиоизотопные источники энергии

2.2 Об­щие све­де­ния

Естественный радиоактивный распад ядер сопровождается выделением кинетической энергии частичек и квантов. Эта энергия поглощается средой, которая окружает радиоактивный изотоп, и превращается в теплоту, которую можно использовать для получения электрической энергии термоэлектрическим способом. Устройства, которые превращают энергию естественного радиоактивного распада в электрическую энергию с помощью термоэлементов, называются радиоизотопными термогенераторами.

2.2 Облости применения

Современные радиоизотопные генераторы имеют КПД 3-5% и срок службы от 3 месяцев до 10 лет. Технико-экономические характеристики этих генераторов в будущем могут быть значительно улучшены. Ныне создаются проекты генераторов мощностью до 10 квт. В радиоизотопных генераторах заинтересованны разные области науки и техники, их собираются использовать в виде источника энергии искусственного сердца человека, а также для стимулирования работы разных органов в живых организмах. Радиоизотопные термогенераторы надежны в работе, имеют большой срок службы, компактные и успешно используются как автономные источники энергии для разных устройств космического и наземного назначения. В особенности удобными оказались радиоизотопные термогенераторы при освоении космического пространства, где необходимы источники энергии, которые способны долго и надежно работать при неблагоприятных условиях влияния ионизирующих излучений, в радиационных поясах, на поверхности других планет и их спутников.

Перейти на страницу:  1  2  3