Рефераты по Физике

Системы возбуждения эксимерных лазеров

Страница 5

Из приведенного рассмотрения следует, что эффек­тивной является предыонизация на определенном опти­мальном временном интервале роста напряжения на разрядном промежутке. Данный интервал находится в окрестности момента достижения ионизационно-прили­пательного равновесия tc, и его верхняя граница соответ­ствует моменту существенного роста электронов в лави­нах ts. При этом качество разряда и, соответственно, интенсивность генерации будут высокими, если к момен­ту ts будет достигаться некая пороговая для данных ус­ловий возбуждения разряда концентрация электронов nf0. Эффективность предионизации, понимаемая как минимальность энергетических затрат на предионизацию при максимальной энергии генерации лазера, опре­деляется оптимальностью способа достижения требуе­мой пороговой концентрации nf0 к моменту времени t$. Шатер из бруса шатры из бруса.

Кривая 7 рис.3,6 подтверждает сказанное выше, т. к. при минимизированном энерговкладе в СР предыониза­тора максимум энергии генерации получен именно тогда, когда импульс УФ излучения СР реализовался на вре­менном интервале tc < t < ts. Если импульс УФ излуче­ния СР реализуется позже оптимального момента вре­мени, показанного на рис.3,а, энергия генерации резко падает (отрицательная область задержек та на рис. 3,6), поскольку фотоэлектроны, созданные после момента времени ts, уже не дают начало дополнительным лави­нам с большим числом электронов и большими разме­рами, способным эффективно (с точки зрения однород­ности разряда) перекрыться, т. е. не повышают уровень предионизации nf0. В случае, когда импульс УФ излуче­ния осуществляется раньше оптимального момента времени (положительная область задержек та на рис.3,6), энергия генерации также падает, т. к. к моменту ts нара­батывается и сохраняется меньшая концентрация фото­электронов из-за их прилипания. Однако, если увеличить энерговклад в СР, энергия генерации сохраняется высо­кой и в области положительных задержек та (кривые 2,3 на рис.3,6), поскольку к моменту ts еще сохраняется тре­буемая концентрация фотоэлектронов.

При использовании схем накачки с предимпульсом высокая скорость нарастания напряжения на предпробойной стадии разряда снижает требования к пороговой концентрации фотоэлектронов, обеспечивающей высо­кое качество основного разряда и максимальную энер­гию генерации XeCl-лазера (рис.4). В то же время, по­скольку предыонизация осуществляется на начальном участке фронта импульса напряжения с малой скоро­стью нарастания, то интервал времени от tc до ts (Т = tc — ts) увеличивается. Соответственно увеличивается и диапазон задержек та, при которых высокая энергия ге­нерации сохраняется (рис.4,6).

Заключение

Обоснован режим эффективной предыонизации в эк-симерных XeCl-лазерах, заключающийся в ее осуществ­лении на оптимальном временном интервале роста раз­рядного напряжения с оптимально сформированным фронтом. Показано, что длительность временного ин­тервала, соответствующего максимальной эффективно­сти предионизации, возрастает при снижении скорости роста разрядного напряжения dU/dt, когда отношение E/N находится в определенной окрестности значения, соответствующего ионизационно-прилипательному рав­новесию (v; = va) в разрядном объеме. В то же время уве­личение dU/dt на этапе лавинного размножения фото­электронов резко снижает уровень предионизации, необ­ходимый для достижения максимального КПД лазера, существенно повышая ее эффективность.

Показано, что предыонизация УФ излучением СР, осуществляемая в оптимальном режиме, позволяет при очень малом энерговкладе в СР (~ 100 мДж) добиваться высоких энергий генерации ХеС1-лазеров с различными условиями ввода энергии в основной разряд. Этот факт имеет важное значение для импульсно-периодического режима работы лазеров, поскольку при таком малом энерговкладе в источник предионизации, во-первых, не вносится существенных возмущений в газовую среду лазера и, во-вторых, обеспечивается приемлемо малое рас­пыление электродов системы формирования вспомога­тельного разряда. Таким образом, предионизатор не яв­ляется препятствием для повышения ресурса исполь­зования как газовой смеси, так и оптических окон лазера при его долговременной работе, что является необходи­мым условием использования лазеров в технологии. Кроме того, при снижении энерговклада в СР ресурс са­мого предыонизатора также увеличивается. При исполь­зовании предыонизатора на базе СР в компактных импульсно-периодических ХеС1-лазерах со средней мощно­стью излучения 500 Вт не отмечено случаев разрушения диэлектрика предыонизатора при наработке, превышаю­щей 108 импульсов.

3. Возбуждение эксимернго KrF-лазера оптическим разрядом в поле ИК лазерного излучения.

В настоящее время экеимерные лазеры (ЭЛ) являются мощными и эффективными источниками когерентного излучения в УФ области спектра. Для их возбуждения широко применяются пучки элект­ронов высокой энергии и электрический разряд. При этом КПД по вложенной энергии многих ЭЛ достигает 10 %. Известны эксперименты по эффек­тивному возбуждению ЭЛ СВЧ разрядом в поле импульсного СВЧ излучения в сходящихся конусо­образных волноводах [1]. В связи с этим представля­ет несомненный интерес возможность возбуждения лазеров на эксимерах (например, KrF, ArF и др.) мощным ИК лазерным излучением, когда в средах этих лазеров развивается оптический разряд.

Эффективными источниками ИК лазерного из­лучения являются импульсные химические лазеры на цепной реакции водорода со фтором. В результа­те ранее проведенных нами исследований была показана возможность создания чисто химических HF- и DF - СО2-лазеров на так называемой фотонно-разветвленной реакции. На их основе возможно создание многокаскадных систем химических лазе­ров, где импульс выходного излучения каждого предыдущего лазера инициирует работу после­дующего, излучающего импульс с энергией, бол­ьшей в 10-20 раз [2]. Таким образом, для трехкаскадной системы выходная энергия ИК лазерного излучения будет превышать энергию входного им­пульса в 103 - 104 раз. Если конечным каскадом служит ЭЛ, возбуждаемый оптическим разрядом в поле ИК излучения импульсного химического лазе­ра с КПД ~ 10 %, то возможно получение импульса УФ лазерного излучения с энергией, в 102 - 103 раз превышающей затраченную на инициирование хи­мического трехкаскадного лазера.

Перейти на страницу:  1  2  3  4  5  6  7  8  9