Рефераты по Физике

Двигатели Стирлинга. Области применения

Страница 4

Система вытеснителя, обеспечивающая периодичность нагрева и охлаждения газа, соединена с рабочим поршнем (в дальнейшем называемым поршнем), который сжимает газ в холодной полости и позволяет ему расширяться в горячей. Поскольку сжатие газа происходит в полости с более низкой температурой, чем расширение, то получается полезная работа. На рисунке показаны четыре цикла, через которые проходит вся система, предполагая, что поршень и вытеснитель двигаются прерывисто. Движения поршня и вытеснителя в двигателе практически непрерывны. Их непрерывное движение обеспечивается посредством кривошипно-шатунного механизма. В этом случае невозможно обнаружить резких границ между четырьмя стадиями цикла, и сам цикл принципиально не меняется, и его КПД не уменьшается.

Таким образом, двигатель Стирлинга представляет собой поршневую машину с внешним подводом тепла, в котором рабочее тело постоянно находится в замкнутом пространстве и во время работы не заменяется.

Предполагается, что движения поршня и вытеснителя - прерывистые. Тогда весь цикл можно разделить на четыре стадии (рис.2.):

I - Поршень находится в крайнем нижнем положении, а вытеснитель - в крайнем верхнем. Весь газ - в холодной полости;

II - Вытеснитель остается в верхнем положении. Поршень сжимает газ при низкой температуре;

III - Поршень остается в крайнем верхнем положении. Вытеснитель переталкивает газ из холодной полости в горячую;

IV - Нагретый газ расширился. Поршень и вытеснитель находятся в своих крайних нижних положениях. В то время как поршень остается на месте, вытеснитель переталкивает газ в холодную полость. Потом цикл повторяется.

Для подвода тепловой энергии можно использовать любой источник тепла: солнечную энергию, биотопливо, ядерную энергию, электроэнергию и проч. В качестве рабочего тела в двигателе Стирлинга обычно используется воздух, гелий или водород. Идеальный термодинамический цикл двигателя Стирлинга обладает термическим КПД, равным максимально возможному теоретическому и составляет 30-40%. КПД двигателя остается почти постоянным в широком диапазоне условий его работы. Но следует учитывать, что двигатель Стирлинга может работать с высоким КПД только при наличии эффективного регенератора. Наиболее эффективно двигатель работает при постоянных значениях скорости и мощности.

Нагрев, охлаждение и регенерация рабочего тела в двигателе осуществляется с помощью встроенных теплообменников, которые должны работать в среде, не содержащей масел, что предотвращает их засорение. В двигателе расходуется довольно малое количество смазочных материалов. Среднее давление в цилиндре, как правило, находится в пределах 10 .20 МПа. При таких колебаниях давления требуется совершенная система уплотнений для предотвращения утечки рабочего тела в картер (проблема, особенно сложная при использовании гелия или водорода), а также попадания смазочных материалов в рабочие полости, что может вызвать увеличение потери давления и снижение выходной мощности.

В настоящее время в большинстве установок с двигателями Стирлинга применяется жидкое топливо из-за простоты его использования и из-за требований, обусловленных конкретным назначением установки. Для нагрева рабочего тела применяют непрерывный процесс горения, что позволяет сжигать различные виды топлива, которые, эффективно сгорая, не создают опасности попадания твердых частиц из топлива, окислителя или окружающего пространства в рабочие цилиндры. При использовании для сжигания жидкого топлива непрерывное горение можно легко регулировать, в результате чего резко снижается уровень выбросов, особенно несгоревших углеводородов и окиси углерода. Отсутствие клапанов в основном корпусе двигателя Стирлинга и работа без периодических взрывов в цилиндрах означают, что устранены основные источники шума, как газодинамического, так и механического. Это делает двигатель Стирлинга существенно менее шумным, чем другие устройства для выработки механической энергии с возвратно-поступательным движением, и перспективным для применения в военных целях.

Отношение мощности к массе у двигателя Стирлинга сопоставимо с аналогичным показателем дизельного двигателя с турбонаддувом. Удельная мощность на выходе такая же, как и у дизельного двигателя. Крутящий момент практически не зависит от скорости. Двигатель Стирлинга реагирует на изменения нагрузки аналогично дизелю, однако требует более сложной системы регулировки, он более сложен, чем обычные тепловые двигатели. Стоимость его изготовления выше стоимости изготовления ДВС, однако, расходы на эксплуатацию гораздо меньше.

4. Рабочие характеристики и особенности конструкции

1.Мощность, вырабатываемая двигателем Стирлинга, как

показывает практика, почти прямо пропорциональна среднему давлению цикла. Поэтому, чтобы получить высокие значения абсолютной и удельной мощности, давление в двигателе должно составлять 10-20 МПа. Такие высокие значения давления создают специфические проблемы при проектировании двигателей. Особую трудность представляет решение проблем, связанных с

- герметизацией рабочего тела;

- напряжениями в теплообменнике;

- нагрузками на подшипники и детали механизма привода.

Поскольку величина давления влияет на развиваемую мощность, управление изменением давления позволяет регулировать крутящий момент двигателя.

2. КПД двигателя Стирлинга может достигать 65-70% КПД цикла Карно при современном уровне проектирования и технологии изготовления. КПД двигателя почти не зависит от скорости двигателя при условии, что температура в трубках нагревателя не изменяется во всем диапазоне рабочих режимов двигателя и температура в холодильнике не возрастает. Температуру в трубках нагревателя следует поддерживать на возможно более высоком уровне. При повышении температуры охлаждающей жидкости на один градус КПД двигателя падает на 0,5%. Вследствие непрерывного воздействия высоких температур для обеспечения длительного срока службы требуются высококачественные сплавы.

Перейти на страницу:  1  2  3  4  5  6  7  8  9